PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On Bending Creep Behaviour of a Powder Metallurgy FeMnSiCrNi Shape Memory Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
FeMnSiCrNi alloys represent a promising class of FeMnSi-based shape memory alloys (SMAs) characterized by excellent characteristics of formability and corrosion resistance. The present paper is focused on a 68Fe-18Mn-3Si-7Cr-4Ni (mass. %) SMA, produced by powder metallurgy routine, which was tested to creep, using a dual cantilever specimen holder, and analyzed by means of the dedicated software of a dynamic mechanical analyzer. The specimens were tested at five temperatures by applying, at each of them, four bending force values, during 2000 s. The variation of bending creep deflection with time, temperature and force was discussed both from the point of instant value and 1000 s-value. These results enabled plotting a space diagram of stabilized creep rate variation with both applied force and test temperature. In such context, a theoretical model in a multifractal paradigm of motion was built, considering that FeMnSiCrNi shape memory alloy can be assimilated, both structurally and functionally, with a multifractal object. Finally, this model was validated by means of experimental data.
Twórcy
  • Gheorghe Asachi Technical University of Iași, Faculty of Materials Science and Engineering, Blvd. Dimitrie Mangeron 61A. 700050 Iași, Romania
  • Gheorghe Asachi Technical University of Iași, Faculty of Materials Science and Engineering, Blvd. Dimitrie Mangeron 61A. 700050 Iași, Romania
autor
  • Gheorghe Asachi Technical University of Iași, Faculty of Materials Science and Engineering, Blvd. Dimitrie Mangeron 61A. 700050 Iași, Romania
  • Gheorghe Asachi Technical University of Iași, Faculty of Materials Science and Engineering, Blvd. Dimitrie Mangeron 61A. 700050 Iași, Romania
Bibliografia
  • [1] H. Otsuka, H. Yamada, T. Maruyama, S. Matsuda, M. Murakami, Effects of Alloying Additions on Fe-Mn-Si Shape Memory Alloys, ISIJ Int. 30, 674-679 (1990).
  • [2] Y. Moriya, H. Kimura, S. lshizaki, S. Hashizume, S. Suzuki, H. Suzuki, T. Sampei, Properties of Fe-Cr-Ni-Mn-Si (-Co) shape memory alloys, J. Phys. IV France 01 C4, 433-437 (1991).
  • [3] Y.H. Wen, H. B Peng, D. Raabe, I. Gutierrez-Urrutia, J. Chen, Y.Y. Du, Large recovery strain in Fe-Mn-Si-based shape memory steels obtained by engineering annealing twin boundaries, Nature Comm. 5, 4964 (2014). DOI: https://doi.org/10.1038/ncomms5964
  • [4] H. Peng, G. Wang, S. Wang, J. Chen, I. Mac Laren, Y. Wen, Key criterion for achieving giant recovery strains in polycrystalline Fe-Mn-Si based shape memory alloys, Mater. Sci. Eng. A. 712, 37-49 (2018). DOI: https://doi.org/10.1016/j.msea.2017.11.071
  • [5] T. Sawaguchi, T. Maruyama, H. Otsuka, A. Kushibe, Y. Inoue, K. Tsuzaki, Design Concept and Applications of FeMnSi-Based Alloys from Shape-Memory to Seismic Response Control, Mater. Trans. 57 (3), 283-293 (2016). DOI: https://doi.org/10.2320/matertrans.MB201510
  • [6] B. Pricop, A.U. Söyler, B. Özkal, L.G. Bujoreanu, Powder Metallurgy: An Alternative for FeMnSiCrNi Shape Memory Alloys Processing, Front. Mater. 7, 247 (2020). DOI: https://doi.org/10.3389/fmats.2020.00247
  • [7] B. Pricop, E. Mihalache, G. Stoian, F. Borza, B. Özkal, L.G. Bujoreanu, Thermo-mechanical effects caused by martensite formation in powder metallurgy FeMnSiCrNi shape memory alloys, Powder Met. 61 (4), 348-356 (2018). DOI: https://doi.org/10.1080/00325899.2018.1492773
  • [8] B. Pricop, F. Borza, B. Ozkal, L.G. Bujoreanu, Influence of Thermal and Mechanical/Powder Processing on Microstructure and Dynamic Stiffness of Fe-Mn-Si-Cr-Ni Shape Memory Alloy, Trans. Indian Inst. Met. 74, 1409-1418 (2021). DOI: https://doi.org/10.1007/s12666-021-02215-8
  • [9] L. Ciurca, N.M. Lohan, B. Pricop, L.G. Bujoreanu, Study of tensile behaviour of Fe base shape memory alloys during mechanical cycling, IOP Conf. Ser.: Mater. Sci. Eng. 591, 012009 (2019). DOI: http://dx.doi.org/10.1088/1757-899X/591/1/012009
  • [10] Y. Bar-Yam, Dynamics of Complex Systems, The Advanced Book Program, Addison-Wesley, Reading, Massachusetts (1997).
  • [11] M. Mitchell, Complexity: A Guided Tour, Oxford University Press, Oxford (2009).
  • [12] R. Badii, Complexity: Hierarchical Structures and Scaling in Physics, Cambridge University Press (1997).
  • [13] G.W. Flake, The Computational Beauty of Nature, MIT Press, Cambridge MA (1998).
  • [14] D. Băceanu, K. Diethelm, E. Scalas, H. Trujillo, Fractional Calculus, Models and Numerical Methods, World Scientific, Singapore (2016).
  • [15] M.D. Ortigueria, Fractional Calculus for Scientists and Engineers, Springer (2011).
  • [16] L. Nottale, Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics, Imperial College Press, London (2011).
  • [17] I. Merches, M. Agop, Differentiability and fractality in dynamics of physical systems, World Scientific, New Jersey (2016).
  • [18] M. Agop, V.P. Paun, On the new perspectives of the fractal theory. Fundaments and applications, Romanian Academy Publishing House, Bucharest (2017).
  • [19] E.A. Jackson, Perspective of nonlinear Dynamics, volume 2, Cambridge University Press, Cambridge (1991).
  • [20] C.P. Cristescu, Nonlinear dynamics and chaos. Theoretical fundaments and applications, Romanian Academy Publishing House, Bucharest (2008).
  • [21] M. Agop, P.E. Nica, S. Gurlui, C. Focsa, V.P. Paun, M. Colotin, Implications of an extended fractal hydrodynamic model, The European Physical Journal D. 56, 405-419 (2010).
  • [22] M. Agop, V.P. Paun, A. Harabagiu, El Naschie’s ε(∞) theory and effects of nanoparticle clustering on the heat transport in nanofluids, Chaos Solitons & Fractals 37 (5), 1269-1278 (2008).
  • [23] M. Agop, P.E. Nica, P.D. Ioannou, A. Antici, V.P. Paun, Fractal model of the atom and some properties of the matter through an extended model of scale relativity, The European Physical Journal D. 49 (2), 239-248 (2008).
  • [24] M. Agop, C. Murgulet, El Naschie’s ε(∞) space-time and scale relativity theory in the topological dimension D = 4, Chaos, Solitons & Fractals 32 (3), 1231-1240 (2007).
  • [25] S. Gurlui, M. Agop, M. Strat, G. Strat, S. Bacaita, A. Cerepaniuc, Some experimental and theoretical results on the anodic patterns in plasma discharge, Physics of Plasmas 13 (6), 063503-06350310 (2006).
  • [26] I. Gottlieb, M. Agop, M. Jarcau, El Naschie’s Cantorian space-time and general relativity by means of Barbilian’s group. A cantorian fractal axiomatic model of space-time, chaos, Solitons & Fractals 19 (4), 705-730 (2004).
  • [27] C. Nejneru, A. Nicuta, B. Constantin, L.R. Manea, M. Teodorescu, M. Agop, Dynamics Control of the Complex Systems via Nondifferentiability, J. App. Math. 2013 (SI19), 1-12 (2013).
  • [28] I. Casian-Botez, M. Agop, P. Nica, V.P. Paun, G.V. Munceleanu, Conductive and Convective Types Behaviors at Nano-Time Scales, J. Comput. Theor. Nanosci. 7 (11), 2271-2280 (2010).
  • [29] O. Niculescu, D.G. Dimitriu, V.P. Paun, P.D. Matasaru, D. Scurtu, M. Agop, Experimental and theoretical investigations of a plasma fireball dynamics, Physics of Plasmas 17 (04), 2305-042305 (2010).
  • [30] M. Colotin, G.O. Pompilian, P. Nica, S. Gurlui, V. Paun, M. Agop, Fractal transport phenomena through the Scale Relativity Model, Acta Phys. Polon. A 116, 157-164 (2009).
  • [31] M. Agop, P. Nica, M. Girtu, On the vacuum status in Weyl-Dirac theory, General Relativity and Gravitation 40 (1), 35-55 (2007).
  • [32] I. Gottlieb, M. Agop, G. Ciobanu, A. Stroe, El Naschie’s ε(∞) space-time, hydrodynamic model of scale relativity theory, Chaos, Solitons & Fractals 34 (5), 1704-1723 (2007).
  • [33] I. Gottlieb, M. Agop, G. Ciobanu, A. Stroe, El Naschie’s ε(∞) space-time and new results in scale relativity theories, Chaos Solitons & Fractals 30 (2), 380-398 (2006).
  • [34] C. Leinenbach, W.J. Lee, A. Lis, A. Arabi-Hashemi, C. Cayron, B. Weber, Creep and stress relaxation of a FeMnSi-based shape memory alloy at low temperatures, Mat. Sci. Eng. A 677, 106-115 (2016). DOI: https://doi.org/10.1016/j.msea.2016.09.042
  • [35] W.S. Burnside, A.W. Panton, The theory of equations, Dova Publishing (1960).
  • [36] N. Mazilu, M. Agop, Skyrmions: A Great Finishing Touch to Classical Newtonian Philosophy, Wold Philosophy Series, Nova New-York (2012).
  • [37] N. Mazilu, M. Agop, I. Merches, The Mathematical Principles of Scale Relativity Physics. The concept of interpretation, CRC Press Taylor, Francis Group (2020).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2791e843-2df6-4269-aadf-b8e9728c198f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.