Identyfikatory
Warianty tytułu
Antimicrobial coatings - a review of current state of technology
Języki publikacji
Abstrakty
The article presents methods of obtaining bioactive properties in the production of printed coatings The problems associated with the design of coatings are discussed and the currently known measures for combating pathogenic microorganisms are compared. Attention was also paid to special effects related to the durability of printed products with bioactive coatings.
Czasopismo
Rocznik
Tom
Strony
5--17
Opis fizyczny
Bibliogr. 59 poz., tab.
Twórcy
autor
- Centralny Ośrodek Badawczo-Rozwojowy Przemysłu Poligraficznego
autor
- Centralny Ośrodek Badawczo-Rozwojowy Przemysłu Poligraficznego
Bibliografia
- 1. Ashkin S., Pros and Cons of Antimicrobial Surface Coatings; Identifying the true effectiveness of coatings. https://www.cmmonline.com/articles/pros-and-cons-of-antimicrobial-surface-coatings (dostęp 15.06.2020).
- 2. Cloutier M., Mantovani D., Rosei F., Antibacterial Coatings: Challenges, Perspectives, and Opportunities, Trends in Biotechnology, 33 (11), 2015, 637–652.
- 3. Snigdha S. [i in.], Engineered Antimicrobial Surfaces; Chapter 1. The Need for Engineering Antimicrobial Surfaces, Springer Nature Singapore Pte Ltd. 2020.
- 4. Tiwari A., Handbook of Antimicrobial Coatings 1st Ed., Elsevier 2017.
- 5. Campoccia D. [i in.], A review of the biomaterials technologies for infection-resistant surfaces, Biomaterials, 34, 2013, 8533–8554.
- 6. Tiller J. C. [i in.], Designing surfaces that kill bacteria on contact. Proc. Natl. Acad. Sci. U.S.A., 98, 2001, 5981–5985.
- 7. Lewis K., Klibanov A. M., Surpassing nature: rational design of sterile-surface materials, Trends Biotechnol., 23, 2005, 343–348.
- 8. Green J-B. D. [i in.], A review of immobilized antimicrobial agents and methods for testing, Biointerphases, 6, 2011, MR13–MR28.
- 9. Dunne W. M., Bacterial adhesion: seen any good biofilms lately?, Clin. Microbiol. Rev., 15, 2002, 155–166.
- 10. Hasan, J. [i in.], Antibacterial surfaces: the quest for a new generation of biomaterials, Trends Biotechnol., 31, 2013, 295–304.
- 11. Friedlander, R. S. [i in.], Bacterial flagella explore microscale hummocks and hollows to increase adhesion, Proc. Natl. Acad. Sci. U.S.A., 110, 2013, 5624–5629.
- 12. Variola, F. [i in.], Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties, Int. J. Nanomed. 9, 2014, 2319–2325.
- 13. Zilberman M., Elsner J.J., Antibiotic-eluting medical devices for various applications, J. Control. Release, 130, 2008, 202–215.
- 14. Glinel K. [i in.], Antibacterial surfaces developed from bio-inspired approaches, Acta Biomater. 8, 2012, 1670–1684.
- 15. Brogden K. A., Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?, Nat. Rev. Microbiol. 3, 2005, 238–250.
- 16. Kazemzadeh-Narbat M. [i in.], Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections, Biomaterials, 34, 2013, 5969–5977.
- 17. Page K. [i in.], Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections, J. Mater. Chem., 19, 2009, 3819–3831.
- 18. Chaloupka K. [i in.], Nanosilver as a new generation of nanoproduct in biomedical applications, Trends Biotechnol. 28, 2010, 580–588.
- 19. Eckhardt S. [i in.], Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine, Chem. Rev., 113, 2013, 4708–4754.
- 20. Lemire J. A. [i in.], Antimicrobial activity of metals: mechanisms, molecular targets and applications, Nat. Rev. Microbiol., 11, 2013, 371–384.
- 21. Samani S. [i in.], In vitro antibacterial evaluation of sol-gel-derived Zn-, Ag-, and (Zn+Ag)-doped hydroxyapatite coatings against methicillin-resistant Staphylococcus aureus, J. Biomed. Mater. Res. A, 101, 2013, 222–230.
- 22. Jin G. [i in.], Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium, Biomaterials, 35, 2014, 7699–7713.
- 23. Kelson A. B. [i in.], Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms, Curr. Opin. Pharmacol., 13, 2013, 707–716.
- 24. Tran, P. A., Webster, T. J., Antimicrobial selenium nanoparticle coatings on polymeric medical devices, Nanotechnology, 24, 2013, 155101.
- 25. Rodríguez-Valencia C. [i in.], Novel selenium-doped hydroxyapatite coatings for biomedical applications, J. Biomed. Mater. Res. A, 101, 2013, 853–861.
- 26. Shirai, T. [i in.], Antibacterial iodine-supported titanium implants, Acta Biomater., 7, 2011, 1928–1933.
- 27. Eby D. M. [i in.], Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments, ACS Appl. Mater. Interfaces, 1, 2009, 1553–1560.
- 28. Zhou B. [i in.], Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers, Colloids Surf. B: Biointerfaces, 116, 2014, 432–438.
- 29. Ivanova K. [i in.], Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters, Appl. Microbiol. Biotechnol., 99, 2015, 4373–4385.
- 30. Carmona-Ribeiro A. M., de Melo Carrasco L. D., Cationic antimicrobial polymers and their assemblies, Int. J. Mol. Sci., 14, 2013, 9906–9946.
- 31. Zhao L. [i in.], Antibacterial coatings on titanium implants, J. Biomed. Mater. Res. B, 91B, 2009, 470–480.
- 32. Baier G. [i in.], Enzymatic degradation of poly(l-lactide) nanoparticles followed by the release of octenidine and their bactericidal effects, Nanomedicine 10, 2014, 131–139.
- 33. Chua P-H. [i in.], Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion, Biomaterials, 29, 2008, 1412–1421.
- 34. Baveja J.K. [i in.], Furanones as potential anti-bacterial coatings on biomaterials, Biomaterials 25, 2004, 5003–5012.
- 35. Vasilev K. [i in.], Antibacterial surfaces for biomedical devices, Expert Rev. Med. Devices,6, 2009, 553–567.
- 36. Wang Z. [i in.], Systematic review and meta-analysis of triclosan-coated sutures for the prevention of surgical-site infection, Br. J. Surg.,100, 2013, 465–473.
- 37. Weber D. J., Rutala W. A., Self-disinfecting surfaces: review of current methodologies and future prospects, Am. J. Infect. Control, 41, 2013, 31–35.
- 38. Storm W. L. [i in.], Dual action antimicrobial surfaces via combined nitric oxide and silver release, J. Biomed. Mater. Res. A, 103, 2015, 1974–1984.
- 39. Carpenter A. W., Schoenfisch M. H., Nitric oxide release, Part II. Therapeutic applications Chem. Soc. Rev., 41, 2012, 3742–3752.
- 40. Michl T. D., Nitric oxide releasing plasma polymer coating with bacteriostatic properties and no cytotoxic side effects, Chem. Commun., 51, 2015, 7058–7060.
- 41. Rtimi S. [i in.], Growth of TiO2/Cu films by HiPIMS for accelerated bacterial loss of viability, Surf. Coat. Tech. 232, 2013, 804–813.
- 42. Snigdha S. [i in.], Material Horizons: From Nature to Nanomaterials; Engineered Antimicrobial Surfaces, Springer, Nowy Jork, 2020.
- 43. Pulit J., Banach M., Kowalski Z., Właściwości nanocząteczek miedzi, platyny, srebra, złota i palladu. (2011). http://suw.biblos.pk.edu.pl/resources/i5/i9/i7/i3/r5973/PulitJ_WlasciwosciNanoczasteczek.pdf (dostęp 24.03.2020).
- 44. Zienkiewicz-Strzałka M., Deryło-Marczewska A., Nanocząstki srebra w układach kompozytowych, 2. Ogólnopolskie Sympozjum „Nauka i Przemysł - Metody spektroskopowe w praktyce, Nowe wyzwania i możliwości”, 26-28.VI.2018, Lublin.
- 45. Jastrzębska A. M., Karwowska E., Olszyna A. R., Kunicki A. R., Comparative assessment of antimicrobial efficiency of ionic silver, silver monoxide and metallic silver incorporated onto an aluminium oxide nanopowder carrier. Journal of Nanoscience, Hindawi Publishing Corporation, DOI: 10.1155/2013/263583, 2013.
- 46. Gottesman R., Shukla S., Perkas N., Solovyov L. A., Nitzan Y., Gadanken A., Sonochemical coating of paper by microbial silver nanoparticles, Langmuir, 27, 2011, 720–726.
- 47. Tankhiwale R., Bajpai S. K., Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging, Colloid Surface B, 90, 2012, 16–20.
- 48. Chawengkijwanisch C., Hayata Y., Development of TiO2 powder coated fod packaging film and its ability to inactivate Escherichia coli in in vitro and in actual tests, International Journal of Food Microbiology, 123, 2008, 288–292.
- 49. Zang W., Qiao H., Chen J., Review. Synthesis of silver nanoparticles - effects of concerned parameters in water/oil microemulsion, Materials Science and Engineering B, 142, 2007, 1–15.
- 50. Chen D., Qiao X., Qiu X., Chen J., Synthesis and electrical properties of uniform silver nanoparticles for electronic applications, Journal of Material Science, 44, 2009, 1076–1081.
- 51. Xu J., Han X., Liu H., Hu Y., Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant, Colloids and Suraces A: Physicochemical and Engineering Aspects, 273, 2006, 179–183.
- 52. Zielecka M., Bujnowska E., Kępska B., Wenda M., Piotrowska M., Antimicrobial additives for architectural paints and impregnates, Progress in Organic Coatings, 72 (1–2), 2011, 193-201.
- 53. Sahoo P. Ch., , Kausar F., Lee J. H., Han J.I., Facile fabrication of silver nanoparticle embedded CaCO3 microspheres via microalgae-templated CO2 biomineralization: application in anti-microbial paint development, RSC Advances, 4, 2014, 32562–32569,DOI: 10.1039/c4ra03623a.
- 54. Dileep P., Jacob S., Narayanankutty S. K., Functionalized nanosilica as an antimicrobial additive for waterborne paints, Progress in Organic Coatings, 142, 2020, 105574–105590.
- 55. Jakucewicz S., Papier w poligrafii, INICJAŁ, Warszawa 1999.
- 56. Gutarowska B., Niszczenie materiałów technicznych przez drobnoustroje, LAB Laboratoria, Aparatura, Badania, 18 (2), 2013, 10–14.
- 57. Tomala L., Ekspert o tajnikach starzenia się papieru, http://naukawpolsce.pap.pl/aktualnosci/news%2C376263%2Cekspert-o-tajnikach-starzenia-sie-papieru.html (dostęp 15.06.2020).
- 58. https://esbud.pl/zycie-smieci-jak-dlugo-rozkladaja-sie-odpady/ (dostęp 15.05.2020).
- 59. Ximemes F., The decomposition of paper products in landfills, https://www.researchgate.net/publication/288600543_The_decomposition_of_paper_products_in_landfills (dostęp 29.05.2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2791b106-326a-4a23-9a9b-786887a7667c