PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical failure analysis of laminated beams using a refined finite element model

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present investigation, laminated composite beams subjected to a bending static loading are studied in order to determine their failure mechanisms and the first ply failure (FPF) load. The FPF analysis is performed using a refined rectangular plate element. The present element is formulated based on the classical lamination theory (CLT) to calculate the in-plane stresses. To achieve this goal, several failure criterions, including Tsai-Wu, Tsai-Hill, Hashin, and Maximum Stress criteria, are used to predict failure mechanisms. These criterions are implemented within the finite element code to predict the different failure damages and responses of laminated beams from the initial loading to the final failure. The numerical results obtained using the present element compare favorably with those given by the analytic approaches. It is observed that the numerical results are very close to the analytical results, which demonstrates the accuracy of the present element. Finally, several parameters, such as fiber orientations, stacking sequences, and boundary conditions, are considered to determine and understand their effects on the strength of these laminated beams.
Rocznik
Strony
32--57
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Laboratory of Development in Mechanics and Materials, University of Djelfa, Djelfa, Algeria
  • Laboratoire de Recherche en Génie Civil, LRGC, Université de Biskra, Biskra, Algeria
  • Laboratory of Development in Mechanics and Materials, University of Djelfa, Djelfa, Algeria
autor
  • Laboratoire de Recherche en Génie Civil, LRGC, Université de Biskra, Biskra, Algeria
Bibliografia
  • 1. Tsai, S.W., Wu, E.M., A general theory of strength for anisotropic materials. Journal of Composite Materials, 5(1) (1971) 58-80. https://doi.org/10.1177/002199837100500106
  • 2. Hill, R., A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 193(1033) (1948) 281-297. https://doi.org/10.1098/rspa.1948.0045
  • 3. Hoffman, O., The brittle strength of orthotropic materials. Journal of Composite Materials, 1(2) (1967) 200-206. https://doi.org/10.1177/002199836700100210
  • 4. Jones, R.M., Mechanics of composite materials, 2018 CRC Press.
  • 5. Yeh, H.-L., Quadric surfaces criterion for composite materials. Journal of Reinforced Plastics and Composites, 22(6) (2003) 517-532. https://doi.org/10.1106/073168403023274
  • 6. Yeh, H.-L., Yeh, H.-Y., The modified quadric surfaces criterion for composite materials. Journal of Reinforced Plastics and Composites, 21(3) (2002) 279-289. https://doi.org/10.1177/0731684402021003110
  • 7. Hashin, Z., Fatigue failure criteria for unidirectional fiber composites. University of Pennsylvania, Philadelphia. 1981.
  • 8. Norris, C., Strength of orthotropic materials subjected to combined stresses, United States Department Of Agriculture Forest Service. 1962.
  • 9. Hart-Smith, L., Predictions of the original and truncated maximum-strain failure models for certain fibrous composite laminates. Composites Science and Technology, 58(7) (1998) 1151-1178. https://doi.org/10.1016/S0266-3538(97)00192-9
  • 10. Sun, C.-T., Comparative evaluation of failure analysis methods for composite laminates, 1996.
  • 11. Davila, C.G., Camanho, P.P., Rose, C.A., Failure criteria for frp laminates. Journal of Composite Materials, 39(4) (2005) 323-345. https://doi.org/10.1177/0021998305046452
  • 12. Puck, A., Kopp, J., Knops, M., Guidelines for the determination of the parameters in puck’s action plane strength criterion. Composites Science and Technology, 62(3) (2002) 371-378. https://doi.org/10.1016/S0266-3538(01)00202-0
  • 13. Catalanotti, G., Camanho, P., Marques, A., Three-dimensional failure criteria for fiber-reinforced laminates. Composite Structures, 95 (2013) 63-79. https://doi.org/10.1016/j.compstruct.2012.07.016
  • 14. Gutkin, R., Pinho, S., Review on failure of laminated composites: experimental perspective and modelling. 2016.
  • 15. Hill, R., The mathematical theory of plasticity. Vol. 11. 1998: Oxford University Press.
  • 16. Berthelot, J.-M., Composite materials: mechanical behavior and structural analysis. Mechanical Engineering Series. 1999: Springer.
  • 17. Azzi, V., Tsai, S.W., Anisotropic strength of composites. Experimental Mechanics, 5(9) (1965) 283-288.
  • 18. Kim, Y., Davalos, J.F., Barbero, E.J., Progressive failure analysis of laminated composite beams. Journal of Composite Materials, 30(5) (1996) 536-560. https://doi.org/10.1177/002199839603000501
  • 19. Lezgy Nazargah, M., Meshkani, Z., An efficient partial mixed finite element model for static and free vibration analyses of fgm plates rested on two-parameter elastic foundations. Structural Engineering And Mechanics, An International Journal, 66(5) (2018.) 665-676.
  • 20. Lezgy Nazargah, M., A high-performance parametrized mixed finite element model for bending and vibration analyses of thick plates. Acta Mechanica, 227(12) (2016) 3429-3450. https://doi.org/10.1007/s00707-016-1676-4
  • 21. Lezgy Nazargah, M., Salahshuran, S., A new mixed-field theory for bending and vibration analysis of multi-layered composite plate. Archives Of Civil And Mechanical Engineering, 18(3) (2018) 818-832. https://doi.org/10.1016/j.acme.2017.12.006
  • 22. Irhirane, E.H., Echaabi, J., Aboussaleh, M., Hattabi, M., Trochu, F., Matrix and fibre stiffness degradation of a quasi-isotrope graphite epoxy laminate under flexural bending test. Journal of Reinforced Plastics and Composites, 28(2) (2009) 201-223. https://doi.org/10.1177/0731684407084213
  • 23. Moncada, A.M., Chattopadhyay, A., Bednarcyk, B.A., Arnold, S.M., Micromechanics-based progressive failure analysis of composite laminates using different constituent failure theories. Journal of Reinforced Plastics and Composites, 31(21) (2012) 1467-1487. https://doi.org/10.1177/0731684412456330
  • 24. Hasan, Z., Muliana, A., Failure and deformation analyses of smart laminated composites. Mechanics of Composite Materials, 48(4) (2012) 391-404. https://doi.org/10.1007/s11029-012-9285-3
  • 25. Daniel, I.M., Constitutive behavior and failure criteria for composites under static and dynamic loading. Meccanica, 50(2) (2015) 429-442. https://doi.org/10.1007/s11012-013-9829-1
  • 26. Lezgy-Nazargah, M., Assessment of refined high-order global–local theory for progressive failure analysis of laminated composite beams. Acta Mechanica, 228(5) (2017) 1923-1940. https://doi.org/10.1007/s00707-017-1807-6
  • 27. Ounis, H., Tati, A., Benchabane, A., Thermal buckling behavior of laminated composite plates: a finite-element study. Frontiers of Mechanical Engineering, 9(1) (2014) 41-49. https://doi.org/10.1007/s11465-014-0284-z
  • 28. Khechai, A., Tati, A., Guettala, A., Finite element analysis of stress concentrations and failure criteria in composite plates with circular holes. Frontiers of Mechanical Engineering, 9(3) (2014) 281-294. https://doi.org/10.1007/s11465-014-0307-9
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-278be9da-723d-489d-a299-52b403a51e4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.