PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acoustic metamaterial design for levelling the impact of double-wall resonance on sound insulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents two solutions employing locally resonant metamaterial to level the mass-air-mass resonance impact on the sound insulation. The first operates on the cantilever beam resonance, and the second uses masses vibrating in flexural mode cut out from the additional panel. Both structures are mounted between two lightweight, honeycomb cardboard panels with a double-wall resonance of 420 Hz. Solutions were analysed numerically for their vibration and acoustic properties and measured in the reverberation chamber, resulting in information about the dispersion curve, effective dynamic mass, and sound insulation. The analytical results of Sound Transmission Loss (STL) and the experimental measurements of diffused-field Sound Reduction Index (SRI) proved the existence of sound-insulation enhancement. The local rise in SRI resulted in an increase of broadband Weighted SRI up to 5 dB.
Rocznik
Strony
art. no. 2024108
Opis fizyczny
Bibliogr. 15 poz., il. kolor., wykr.
Twórcy
  • Department of Acoustics, Multimedia and Signal Processing, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wroclaw, Poland
  • Department of Acoustics, Multimedia and Signal Processing, Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego St., 50-370 Wroclaw, Poland
Bibliografia
  • 1. F. Langfeldt, H. Hoppen, W. Gleine; Broadband low-frequency sound transmission loss improvement of double walls with Helmholtz resonators; J Sound Vib, 2020, 476, 1-16; DOI: 10.1016/j.jsv.2020.115309
  • 2. N.G.R. de Melo Filho, L. Van Belle, C. Claeys, E. Deckers, W. Desmet; Dynamic mass based sound transmission loss prediction of vibro-acoustic metamaterial double panels applied to the mass-air-mass resonance; J Sound Vib, 2019, 442, 28-44; DOI: 10.1016/j.jsv.2018.10.047
  • 3. Y. Xiao, J. Wen, X. Wen; Sound transmission loss of metamaterial-based thin plates with multiple subwavelength arrays of attached resonators; J Sound Vib, 2012, 331(25), 5408-5423; DOI: 10.1016/j.jsv.2012.07.016
  • 4. J.H. Vazquez Torre, J. Brunskog, V. Cutanda Henriquez; An analytical model for broadband sound transmission loss of a Finite Single Leaf Wall using a two degree of freedom resonant Metamaterial; Proc Int Congr Acoust, 2019, 2019-Septe(1), 2091-2098; DOI: 10.18154/RWTH-CONV-239598
  • 5. L. Van Belle, C. Claeys, E. Deckers, W. Desmet; The impact of damping on the sound transmission loss of locally resonant metamaterial plates; J Sound Vib, 2019, 461, 114909; DOI: 10.1016/j.jsv.2019.114909
  • 6. C.J. Naify, C.M. Chang, G. McKnight, S. Nutt; Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials; J Appl Phys, 2010, 108(11); DOI: 10.1063/1.3514082
  • 7. C.J. Naify, C.M. Chang, G. McKnight, F. Scheulen, S. Nutt; Membrane-type metamaterials: Transmission loss of multi-celled arrays; J Appl Phys, 2011, 109(10); DOI: 10.1063/1.3583656
  • 8. K.A. Mulholland, H.D. Parbrook, A. Cummings; The transmission loss of double panels; J Sound Vib, 1967, 6(3), 324-334; DOI: 10.1016/0022-460X(67)90205-2
  • 9. J. Wang, T.J. Lu, J. Woodhouse, R.S. Langley, J. Evans; Sound transmission through lightweight double-leaf partitions: Theoretical modelling; J Sound Vib, 2005, 286(4-5), 817-847; DOI: 10.1016/j.jsv.2004.10.020
  • 10. C. Hakoda, J. Rose, P. Shokouhi, C. Lissenden; Using Floquet periodicity to easily calculate dispersion curves and wave structures of homogeneous waveguides; In: AIP Conference Proceedings. American Institute of Physics Inc. 2018
  • 11. A. Melnikov, M. Hankec, S. Marburg; Dispersion Curves of Elastic Metamaterials and Sonic Crystals with ANSYS Pianissimo-Development of Noise Optimized Stage Elevator View project; In: 36. CADFEM ANSYS Simulation Conference, 2018
  • 12. A. Klimek; Fluid-Fluid Phononic Crystal with Elastic Coat Working in Audible Frequencies; Vib. Phys. Syst., 2019, 30(1), 2019145
  • 13. A.D. Canonsburg; Acoustic Analysis Guide; January 2019
  • 14. ASTM E-756; Standard Test Method for Measuring Vibration-Damping Properties of Materials; Annu B ASTM Stand, 2005, 05(Reapproved 2017), 14; DOI: 10.1520/E0756-05R17.2
  • 15. ISO 15186-1:2000; Acoustics - Measurement of sound insulation in buildings and of building elements using sound intensity - Part 1: Laboratory measurements; ISO, 2000
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2782fc1b-ee46-4cc2-891e-00838f9e908f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.