PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Ectohydricity of lichens and role of cortex layer in accumulation of heavy metals

Autorzy
Identyfikatory
Warianty tytułu
PL
Ektohydryczność porostów i rola warstwy korowej w akumulacji metali ciężkich
Języki publikacji
EN
Abstrakty
EN
Heavy metal and dust pollution absorption through lichen thallus occurs on the surface, that is by means of ectohydric sorption . Protective mechanisms, among which there is heterometric (layered) structure of lichens, play a significant role in limiting this process. The aim of this research was to determine the way the pollution penetrates inside lichen thallus and to determine the role of dermal layer in stopping heavy metals on the thallus surface . Lichen thalli exposed to transport pollution near Krakow-Katowice motorway for half a year were analyzed. With the use of Electron Scanning Microscope Quanta 250 and microanalyser EDEX accumulation of pollutions depositing on the outer lichen surface, on the surface of algal cells, in subcortex layer, on the fungal hyphae surface and intercellular spaces of crack bottom of pseudocyphella were determined. The results of the analysis show an important role of pseudocyphella in the process of pollution penetration inside lichen thallus and protective effectiveness of the upper cortex whose tight structure and thickness of chitinous cell walls of mycelium, relatively thicker in comparison to parenchyma layer, influence its dermal properties. Heavy metal accumulation (Al, Fe, Cu) on the thallus surface, on algal cell surface, on the fungal hyphae surface and deep layers of pseudocyphella cracks is presented by the order: crack > alga > fungi > subcortex layer > thallus surface.
PL
Wchłanianie metali ciężkich i zanieczyszczeń pyłowych przez plechy porostowe odbywa się na drodze powierzchniowej, tzw. ektohydrycznej sorpcji. Istotną rolę w ograniczeniu tego procesu odgrywają naturalne mechanizmy ochronne, m.in. heteromeryczna (warstwowa) budowa porostów. Celem badań było określenie dróg przenikania zanieczyszczeń w głąb plechy porostów oraz określenie roli warstwy dermalnej w zatrzymywaniu metali ciężkich na powierzchni plechy. Analizie poddano plechy porostowe, które przez okres pół roku eksponowano na zanieczyszczenia komunikacyjne przy autostradzie Kraków - Katowice. Przy wykorzystaniu skaningowego mikroskopu elektronowego Quanta 250 oraz mikroanalizatora EDAX określano kumulację zanieczyszczeń osadzających się na zewnętrznej powierzchni plechy, na powierzchni komórek glonowych, w warstwie podkorowej, na powierzchni strzępków grzybowych i w przestrzeniach międzykomórkowych dna szczeliny pseudocyfeli. Wyniki analiz wskazują na istotną rolę szczelin pseudocyfeli w procesie przenikania zanieczyszczeń w głąb plechy porostu oraz skuteczność ochronną warstwy kory górnej, której zwarta struktura oraz grubość chitynowych ścian komórek grzybni jest relatywnie grubsza w stosunku do grzybni warstwy miąższowej, co decyduje o jej właściwościach dermalnych. Kumulację metali ciężkich (Al, Fe, Cu) na powierzchni plechy, powierzchni komórek glonowych, w warstwie podkorowej, na powierzchni strzępków grzybowych i w przestrzeniach międzykomórkowych dna szczeliny pseudocyfeli przedstawia układ szczelina > glon > grzyb > warstwa podkorowa > powierzchnia plechy.
Rocznik
Strony
659--676
Opis fizyczny
Bibliogr. 69 poz., fot., wykr., rys., tab.
Twórcy
  • Department of Environment Protection and Modelling, The Jan Kochanowski University, ul. Świętokrzyska 15, 25-406 Kielce, Poland, phone +48 41 349 64 34, fax +48 41 349 64 18
Bibliografia
  • [1] Nylander W. Les lichens du Jordin du Luxembourg. Bull Soc Bot France. 1866;13:364-372
  • [2] Harwksworth DL, Rose F. Nature. 1970;227:145-148.
  • [3] Zurzycki J. Research on arboreal lichens Krakow and the surrounding area. Materials to the physiography of the country. 1950;24:1-30.
  • [4] Wilkoń-Michalska J, Glazik N, Kalińska A. Acta Univ Nicol Coperni, Biologia, 1968; 29:209-253.
  • [5] Cieśliński S. Epiphytic lichen flora of Radom. Quarterly Bulletin of the Radom Science Society. 1974;11(3/4):169-189.
  • [6] Kiszka J. Effect of urban and industrial lichen flora [Lichenes] Krakow and Niepolomicka Forest. HPS monographs in Cracow. 1977;19:1-137
  • [7] Fałtynowicz W, Izydorek I, Budzbon E. The lichen flora as bioindicator of air pollution of Gdańsk, Sopot and Gdynia. Monogr Bot. 1991;73:1-53.
  • [8] Kiszka J. Lichens and Przemysl of bioecological conditions. Arboretum Bolestraszyce, 6th Issue Publisher Mercator, 1999; 86 p.
  • [9] Kiszka J, Koscielniak R. Lichens of Krakow and the valorisation of their bioecological conditions. Stud RIA Document Fizjogr. 1996;24:21-72.
  • [10] Matwiejuk A. Bialystok lichens as indicators of air pollution. Bialystok: Publisher Economics and the Environment; 2007;102.
  • [11] Kiszka J. Lichen indication of Krakow region. Stud RIA Document Fizjogr. 1990;18:201-212.
  • [12] Bylinska EA, Seaward MRD, Kwapulinski J. Sci Total Environ. 1978;41:101-112.
  • [13] Kiszka J, Grodzińska K. Lichen flora and air pollution in the Niepołomice Forest (S Poland) in 1960-2000. Biologia (Bratislava). 2004;59:25-37.
  • [14] Miszalski Z. Sensitivity of lichens on SO2 pollution. Botanic News. 1984;28(4):283-302.
  • [15] Marska B. The impact of industrial emissions on growth Hypogymnia physodes (L.) Nyl. exhibited in the tables around Chemical Plant "Police". Sci Papers of the Agricult University in Szczecin Natural Series. 1982;29(95):79-87.
  • [16] Chibowski S, Reszka MJ. Radioanal Nucl Chem. 2001;247(2):443-446. DOI: 10.1023/A:1006798828071.
  • [17] Sawicka-Kapusta K, Zakrzewska M. Air contamination in Swietokrzyski National Park between 1991-2001 using Hypogymnia physodes as bioindicator. Reg Monit of Natural Environ. 2002;3:83-86.
  • [18] Migaszewski ZM, Gałuszka A, Pasławski P. Polynuclear aromatic hydrocarbons, phenols and trace metals in selected soil profiles and plant bioindicators in the Holy Cross Mountains, south-central Poland. Environ Internat. 2002;28(4):303-313. DOI: 10.1016/S0016-7037(02)00873-6.
  • [19] Migaszewski ZM, Gałuszka A, Pasławski P. Baseline element concentrations in soils and plant bioindicators of selected national parks of Poland. Geol Quart. 2004;48(4):383-394.
  • [20] Jóźwiak MA, Jóźwiak M. Environ and Natural Res. 2009;40:419-429.
  • [21] Jóźwiak MA, Jóźwiak M. Assessment of air pollution in Kielce, based on biomonitoring as part of monitoring the implementation of sustainable development of natural and environmental management.Kielce Sientific Society. 2011; 45 p.
  • [22] Kłos A, Rajfur M, Ciesielczuk T, Wacławek M, Wacławek W. Ecol Chem Eng S. 2008: 15(1):77-84.
  • [23] Pacheco AMG, Freitas MC, Barros LIC, Figueira R. J Radioanal Nucl Chem. 2001; 247(2):327-331.
  • [24] Pacheco AMG, Freitas MC. J Radioanal Nucl Chem. 2004;259(1):27-33.
  • [25] Freitas MC, Pacheco AMG, Marques AP, Barros LIC, Reis MA. Applications of nuclear analytical techniques to environmental studies. AIP Confer Proc. 2001;576(1):508-511.
  • [26] Garty J. Canad J Bot. 1988; 66(4):668-682.
  • [27] Garty J, Kauppi M, Kauppi A. The influence of air pollution on the concentration of airborne elements and on the production of stress-ethylene in the lichen Usnea hirta (L) Weber em Mot transplanted in urban sites in Oulu, N Finland. Arch Environ Contam Toxicol. 1997;32:285-290.
  • [28] Garty J, Delarea J. Symbiosis. 1987;3:49-56.
  • [29] Grasso MF, Clocchiatti R, Deschamps C, Vurro F. Environ Geol. 1999;37(3):207-217.
  • [30] Varrica D, Aiuppa A, Dongarra G. Environ Pollut. 2000;108:153-162. DOI: 10.1016/S0269-7491(99)00246-8.
  • [31] Bargagli R, Barghigiani C. Environ Monit Assess. 1991;69(4):337-348.
  • [32] Loppi S, Nelli L, Ancora S, Bargagli R. Passive monitoring of trace elements by means of tree leaves, epiphytic lichens and bark substrate. Environ Monit Assess. 1997;45:81-88. DOI: 10.1023/A:1005770126624.
  • [33] Loppi S, Frati L, Paoli L, Bigagli V, Rossetti C, Bruscoli C, et al. Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy). Sci Total Environ. 2004;326:113-122. DOI: 10.1016/j.scitotenv.2003.12.003.
  • [34] Scerbo R, Possenti L, Lampugnani L, Ristori T, Barale R, Barghigiani C. Sci Total Environ. 1999;286:27-40.
  • [35] Pla RR, Moreno MA, Adler M. The use biomonitors and neutron activation analysis in the study of air pollution of Buenos Aires city. In: Biomonitoring of Atmospheric Pollution (with Emphasis on Trace Elements) - BioMap. IAEA (ed). Lisbon, Portugal: IAEA; 2000;122-128.
  • [36] Jasan RC, Verburg TG, Wolterbeek HTh, Plá RR, Pignata ML. On the use of the lichen Ramalina celastri (Spreng.) Krog. & Swinsc. as an indicator of atmospheric pollution in the province of Cordoba, Argentina, considering both lichen physiological parameters and element concentrations. J Radioanal Nuclear Chem. 2004;259:93-97. DOI: 10.1023/B:JRNC.0000015812.46333.41.
  • [37] Bubach DF, Arribere MA, Riberio Guevara S, Calvelo S. Study on the feasibility of using transplanted Protousnea magellanica thalli as a bioindicator of atmospheric contamination J Radioanal Nuclear Chem. 2001;250(3):63-68.
  • [38] Tuncel SG, Yenisoy-Karakas S. Water Air Soil Pollut. 2003;3:97-107.
  • [39] Yenisoy-Karakas S, Tuncel SG. J Radioanal Nuclear Chem. 2004;259(1):113-118.
  • [40] Jeran Z, Jaćimović R, Batič F, Smodiš B, Wolterbeek HT. Atmospheric heavy metal pollution in Slovenia derived from results for epiphytic lichens. J Anal Chem. 1996;354:681-687.
  • [41] Jaćimović R, Batič F, Kostelec D, Mavasar R, Simoničič P. Epiphytic lichens as biomonitors of atmospheric pollution in Slovenian forest. Environ Pollut. 2007;146:324-331. DOI: 10.1016/j.envpol.2006.03.032.
  • [42] Jeran Z, Jaćimović R, Batič F, Mavsar R. Lichens as integrating air pollution monitors. Total Environ. 2002;120:107-113. DOI: 10.1016/S0269-7491(02)00133-1
  • [43] Ford J, Landers D, Kugler D, Lasorsa B, Allen-Gil S, Crecelius E. Sci Total Environ. 1995;160/161:323-35.
  • [44] Pilegaard K. Bioscience. 1994;43:20.
  • [45] Poblet A, Andrade S, Scagliola M, Vodopivez C, Curtosi A, Pucci A, et al. The use of epilithic Antarctic lichens (Usnea aurantiacoatra and U-antartica) to determine deposition patterns of heavy metals in the Shetland Islands, Antarctica. Sci Total Environ. 1997;207:187-194. DOI: 10.1016/S0048-9697(97)00265-9.
  • [46] Grodzinska K, Godzik B, Szarek G. Heavy metals and sulphur in lichens from southern Spitsbergen. Fragm Flor Geobot Suppl. 1993;2(2):699-708.
  • [47] Olech M. Polish Polar Res. 1991;12(1):129-131.
  • [48] Olech M, Osyczka P, Dutkiewicz EM. Polish Polar Stud. 2000;99:99-103.
  • [49] Freitas MC, Reis MA, Marques AP, Wolterbeek HT. J Radioanal Nuclear Chem. 2001;49(2):307-315.
  • [50] Kłos A, Rajfur M, Wacławek M, Wacławek W. Environ Prot Eng. 2009;3:105-121.
  • [51] Jóźwiak MA, Jóźwiak M, Kozłowski R. Monographs of Systems Operations Team PAS. 2010;2:177-199.
  • [52] Jóźwiak MA. Ecol Chem Eng S. 2012;19(4):549-569.
  • [53] Nash III THE. editor. Lichen Biology. Cambridge: Cambridge University Press; 2008.
  • [54] Piotrowski J. Basics of Toxicology. Warsaw: Publisher of Science and Technology; 2006
  • [55] Garty J. Biomonitoring heavy metal pollution with Lichens. In: Kranner I, Beckett RP, Varma AK, editors. Protocols in Lichenology, Berlin: Springer; 2002;458-482.
  • [56] Kranner I, Beckett RP, Varma AK, editors. Protocls in lichenology. Culturing, biochemistry, ecophysiology and use in biomonitoring. Berlin, Heidelberg, New York: Springer-Verlag; 2002.
  • [57] Brown RM, Wilson R. J Phytol. 1968;4:230-240.
  • [58] Majeti NV, Kumar R. A review of chitin and chitosan applications. Reactive and Functional Polymers. 2000;46:1-27.
  • [59] Zarzycki R, Modrzejewska Z. J Chem Eng Technol. 2003;3:324-327.
  • [60] Białońska D, Dayan FE. J Chem Ecol. 2005;31:2975-2991.
  • [61] Malcolm WM, Galloway DJ. New Zeland Lichens, Museum of New Zeland te papa Tongarewa; 1997.
  • [62] Fałtynowicz W. Using lichens to assess air pollution. Krosno: Rural Environ Educat Center; 1995;141.
  • [63] Wójciak H. Lichens, Bryophytes, Pteridophytes. Polish Flora. Warsaw: Multico; 2007.
  • [64] Szweykowscy AJ. Botanic. Morphology. Warsaw: NSP; 2008.
  • [65] Jóźwiak MA, Jóźwiak M. Ecol Chem Eng S. 2009;16(3):323-334.
  • [66] Frey B, Scheidegger Ch. Preparative Techniques for Low Temperature Scanninge Electron Microscopy of Lichens, In: Kranner I, Beckett RP, Varma AK, editors. Protocols in Lichenology. London: Springer; 2002;118-134.
  • [67] Armitage MH, Howe GF. The ultrastucture of lichen cells supports creation, not macroevolution. CRSQ. 2007;44(1):40-53.
  • [68] Garty J, Levin T, Cohen Y, Lehr H. Biomonitoring air pollution with the desert lichen Ramalina maciformis. Physiologia Plantarum. 2002;115:267-275. DOI: 10.1034/j.1399-3054.2002.1150213.x.
  • [69] Garty J, Tamir O, Levin T, Lehr H. Environ Pollut. 2006;145:266-273. DOI: 10.1016/j.envpol.2006.03.022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-277c3a53-d10d-459d-aad2-1b3e341e22e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.