PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Polyolefin fibres used in cementitious composites – manufacturing, properties and application

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Włókna poliolefinowe stosowane w kompozytach cementowych – metody wytwarzania, właściwości i zastosowanie
Języki publikacji
EN
Abstrakty
EN
This paper presents the manufacturing and properties of three types of polyolefin fibres: monofilament and fibrillated polypropylene microfibres and macro-synthetic (PP/PE) fibres – today, besides steel and glass fibres, these are the most widely used fibrous reinforcement of cement composites. Different types of fibres result from various methods of improving the low modulus of elasticity and poor adhesion of PP fibres (chemically inert) to the cement matrix. These methods are also described in the paper.
PL
W artykule przedstawiono metody wytwarzania i właściwości trzech rodzajów włókien poliolefinowych: mikrowłókien polipropylenowych elementarnych (przędzy) i fibrylowanych oraz makrowłókien syntetycznych (PP/PE), stosowanych obecnie najczęściej (obok włókien stalowych i szklanych) jako zbrojenie włókniste kompozytów cementowych. Występowanie kilku typów włókien wynika z różnych metod polepszania niskiego modułu sprężystości i słabej przyczepności włókien polipropylenowych (chemicznie obojętnych) do matrycy cementowej. Metody te także opisano w artykule.
Rocznik
Strony
155--178
Opis fizyczny
Bibliogr. 64 poz., tab., il., wykr.
Twórcy
autor
  • Institute of Building Materials and Structures, Faculty of Civil Engineering, Cracow University of Technology
  • Department of Additives and New Chemical Technologies, Oil and Gas Institute – National Research Institute
Bibliografia
  • [1] Alani A.M., Beckett D., Mechanical properties of a large scale synthetic fibre reinforced concrete ground slab, Construction and Building Materials, Vol. 41, 2013, 335–344.
  • [2] Attiogbe E.K., Schaef S., Kerobo Ch.O., Vojtko D., Nmai Ch.K., A new fiber for enhanced crack control. Polypropylene fiber with chemical bond to concrete, Concrete International, December, 2014, 35–39.
  • [3] Babafemi A.J., Boshoff W.P., Tensile creep of macro-synthetic fibre reinforced concrete (MSFRC) under uni-axial tensile loading, Cement and Concrete Composites, Vol. 55, 2015, 62–69.
  • [4] Bentur A., Mindess S., Fibre reinforced cementitious composites, Taylor&Francis, 2007.
  • [5] Bernard E.S., Design of fibre reinforced shotcrete linings with macro-synthetic fibres, 11th International Conference on Shotcrete for Underground Support, Davos, Switzerland, 7–10 June 2009, 161–171.
  • [6] Brandt A.M., Cement based composites: materials, mechanical properties and performance, Taylor & Francis, 2009.
  • [7] Chawla K.K., Fibrous materials, Cambridge University Press, 2005.
  • [8] Clements J.K., Bernard E.S., The use of macro-synthetic fiber-reinforced shotcrete in Australia, Shotcrete, Fall, 2004, 20–22.
  • [9] Di Maida P., Radi E., Sciancalepore C., Bondioli F., Pullout behavior of polypropylene macro-synthetic fibers treated with nano-silica, Construction and Building Materials, Vol. 82, 2015, 39–44.
  • [10] Domone P., Illston J., Construction materials. Their nature and behaviour, SponPress, 2010.
  • [11] Glinicki M.A., Concrete with structural reinforcement, 25th Workshop for Structural Designers (WPPK’2010), Szczyrk, 10–13.03.2010, 279–308 (in Polish).
  • [12] Goldfein S., Plastic fibrous reinforcement for Portland cement, Technical Report No. 1757-TR, US Army Engineering Research & Development Laboratories, Fort Belvoir, VA, USA, 1963.
  • [13] Han J.-W., Jeon J.-H., Park C.-G., Bond characteristics of macro polypropylene fiber in cementitious composites containing nanosilica and styrene butadiene latex polymer, International Journal of Polymer Science, 2015, homepage: www.hindawi.com/journals/ijps/2015/207456/ (access: 24.06.2016).
  • [14] Hannant D.J., Fibre-reinforced concrete, [in:] J. Newman, B.S. Choo (Eds.): Advanced Concrete Technology. Processes, Elsevier Ltd., 2003, Chapter 6.
  • [15] Hannant D.J., Durability of polypropylene fibers in Portland cement-based composites: eighteen years of data, Cement and Concrete Research, Vol. 28, 1998, 1809–1817.
  • [16] Kalifa P., Chene G., Galle C., High-temperature behaviour of HPC with polypropylene fibres. From spalling to microstructure, Cement and Concrete Research, Vol. 31, 2001, 1487–1499.
  • [17] Lambrechts A., Steel – and synthetic fibre reinforced concrete. Which fibre to use for which application and why?, Bekaert, 2009, homepage: www.ribaproductselector.com/Docs/6/17706/external/COL717706.pdf (access: 24.06.2016).
  • [18] Milwich M., Types and production of textiles used for building and construction, [in:] G. Pohl (Ed.): Textiles, polymers and composites for buildings, Woodhead Publishing, 2010, Chapter 2.
  • [19] Naaman A.E., New fiber technology, Concrete International, July, 1998, 57–62.
  • [20] Oh B.H., Kim J.C., Choi Y.C., Fracture behavior of concrete members reinforced with structural synthetic fibers, Engineering Fracture Mechanics, Vol. 74, 2007, 243–257.
  • [21] Preston J., Man-made fibre, homepage:www.britannica.com/technology/man-made-fiber (access: 13.04.2016).
  • [22] Richardson A.E., Landless S., Synthetic fibres and steel fibres in concrete with regard to bond strength and toughness, Built Environment Research Papers, Vol. 2, December, 2009, 128–140.
  • [23] Ridout A., Macro-synthetic fibre for segmental linings and other precast concrete elements, Concrete, Vol. 42, September, 2009, 41–42.
  • [24] Sakurada I., Polyvinyl alcohol fibers, International Fiber Science and Technology Series, Vol. 6, Marcel Dekker Inc., 1985.
  • [25] Singh S., Shukla A., Brown R., Pullout behavior of polypropylene fibers from cementitious matrix, Cement and Concrete Research, Vol. 34, 2004, 1919–1925.
  • [26] Soutsos M.N., Le T.T., Lampropoulos A.P., Flexural performance of fibre reinforced concrete made with steel and synthetic fibres, Construction and Building Materials, Vol. 36, 2012, 704–710.
  • [27] Sun Z., Xu Q., Microscopic, physical and mechanical analysis of polypropylene fiber reinforced concrete, Materials Science and Engineering A, Vol. 527, 2009, 198–204.
  • [28] Trottier J.-F., Mahoney M., Innovative synthetic fibers, Shotcrete, Fall, 2004, 26–31.
  • [29] Winterberg R., Sedgman G., In-service performance of macro synthetic FRC in tunnel linings, Tunnelling Journal, February-March, 2015, 42–44.
  • [30] Won J.-P., Lim D.H., Park C.-G., Bond behaviour and flexural performance of structural synthetic fibre-reinforced concrete, Magazine of Concrete Research, Vol. 58(6), August, 2006, 401–410.
  • [31] Zerbino R., Monetti D.H., Giaccio G., Creep behaviour of cracked steel and macro-synthetic fibre reinforced concrete, Materials and Structures, Vol. 49, 2016, 3397–3410.
  • [32] Zych T., Study of the properties of hybrid fibre reinforced concretes, [in:] A. Zingoni (Ed.): Research and Applications in Structural Engineering, Mechanics and Computation, Taylor & Francis Group, 2013, 1579–1585.
  • [33] Guidance on the use of macro-synthetic-fibre-reinforced concrete, Technical Report 65, The Concrete Society, UK, 2007.
  • [34] ASTM C1116:2015. Standard specifications for fibre-reinforced concrete.
  • [35] EN 14889-2:2006 Fibres for concrete – Part 2: Polymer fibres. Definitions, specifications and conformity.
  • [36] JCI-SF8:1984 Method of testing for bonds of fibers, Japan Concrete Institute, Committee on Fiber Reinforced Concrete, Tokyo, Japan.
  • [37] Hogan, D.J., Graded fiber design and concrete reinforced there. Synthetic Industries, Chickamauga, GA. USA. Patent.US5456752 A. Pub.10.10.1995.
  • [38] Prasanna, K.J., Bi-component fibers with EVOH on the surface for concrete reinforcement. The Dow Chemical Company, Midland, MI. USA. Patent. US20150133018 A1. Pub.14.05.2015.
  • [39] Pyzik, A.J., et al., Plastic fibers for improved concrete. The Dow Chemical Company, Midland, MI. USA. Patent.US20020018895 A1. Pub.14.02.2002.
  • [40] http://www.abcpolymerindustries.com (access: 24.06.2016).
  • [41] http://www.adfil.co.uk (access: 24.06.2016).
  • [42] http://www.bautech.pl (access: 24.06.2016).
  • [43] http://www.bekaert.com (access: 24.06.2016).
  • [44] http://www.bm-underground.com (access: 24.06.2016).
  • [45] http://www.bruggcontec.com (access: 24.06.2016).
  • [46] http://www.chryso.com (access: 24.06.2016).
  • [47] http://www.danishfibres.com (access: 24.06.2016).
  • [48] http://www.elastoplastic.com (access: 24.06.2016).
  • [49] http://www.euclidchemical.com (access: 24.06.2016).
  • [50] http://www.fibercon.com.au/Macro-Poly.html (access: 24.06.2016).
  • [51] http://www.fibermesh.com (access: 24.06.2016).
  • [52] http://www.fibreistrice.com (access: 24.06.2016).
  • [53] http://www.forta-ferro.com (access: 24.06.2016).
  • [54] http://www.larsenbuildingproducts.com (access: 24.06.2016).
  • [55] http://www.nycon.com (access: 24.06.2016).
  • [56] http://www.sika.com (access: 24.06.2016).
  • [57] http://www.tunneltalk.com/TunnelTECH-Sep2014-Rossi-critique-of-Bernard-WTC-synthetic-FRS-paper.php (access: 24.06.2016).
  • [58] http://www.tunneltalk.com/Feedback-Nov2014-Response-to-macro-synthetic-fibre-critique.php (access: 24.06.2016).
  • [59] http://textileengineerr.blogspot.com (access: 24.06.2016).
  • [60] http://pol.sika.com (access: 24.06.2016).
  • [61] http://propexglogal.com (access: 24.06.2016).
  • [62] https://gcpat.com/construction/en-gb (access: 24.06.2016).
  • [63] https://worldwide.espacenet.com/publicationDetails (access: 24.06.2016).
  • [64] http://dtic.mil/dtic/tr/fulltext/u2/a262597.pdf (access: 24.06.2016).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27765c0a-d768-4992-a89e-70e537c7c648
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.