PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

System elektroenergetyczny o dużym nasyceniu generacją rozproszoną - wyzwania stojące przed automatyką systemową

Identyfikatory
Warianty tytułu
EN
Power system with high saturation with distributed generation - challenges facing protection and control
Języki publikacji
PL
Abstrakty
PL
Artykuł przedstawia wybrane problemy związane z pracą sieci dystrybucyjnych przy dużym nasyceniu instalacjami generacji rozproszonej. Identyfikując problemy napięciowe w sieciach SN oraz przeciążeniowe w sieciach 110 kV wskazano sposoby ich rozwiązania uwzgledniające możliwości współczesnych systemów zbierania i przetwarzania danych pomiarowych opisujących stan sieci oraz ich wykorzystanie przez układy automatyki regulacyjnej i systemowej.
EN
The article presents selected problems related to the operation of distribution networks with high saturation with distributed generation. By identifying voltage problems in MV networks and overload problems in 110 kV networks, ways of solving them were indicated, taking into account the capabilities of modern systems for collecting and processing measurement data describing the state of the network and their use by control and protection systems.
Rocznik
Strony
3--9
Opis fizyczny
Bibliogr. 80 poz., rys., wykr.
Twórcy
  • Katedra Elektroenergetyki Politechniki Lubelskiej
  • Katedra Elektroenergetyki Politechniki Lubelskiej
Bibliografia
  • [1] Abbas A.Y.M., S.E.G.M. Hassan, Y.H. Abdelrahim. 2016. Transmission Lines Overload Alleviation by Generation Rescheduling and Load Shedding. J. Infrastruct. Syst. 22(4), https://doi.org/10.1061/(ASCE)IS.1943-555X.0000313.
  • [2] Abrantes H.D., C.A Castro. 2002. A New Efficient Nonlinear Programming-Based Method for Branch Overload Elimination. Electric Power Components and Systems, 30(6):525-37, https://doi.org/10.1080/15325000290084948.
  • [3] Abrantes H.D., C.A. Castro. 2000. New branch overload elimination method using nonlinear programming. In: 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134). IEEE: 231-236.
  • [4] Argasińska H. 2002. Monitoring obciążalności prądowej oraz parametrów linii napowietrznej. Biuletyn Techniczny Energoprojekt Kraków, 2: 44-48.
  • [5] Arini M.E. 1997. Fast method to alleviate line overloads by corrective generation rescheduling and load shedding. Electric Machines & Power Systems, 25(4):355-70, https://doi.org/10.1080/07313569708955745.
  • [6] ARYA L.D., A. Koshti. 2014. Anticipatory load shedding for line overload alleviation using Teaching learning based optimization (TLBO). International Journal of Electrical Power & Energy Systems, 63:862-77, https://doi.org/10.1016/j.ijepes.2014.06.066.
  • [7] Arya L.D., S.C. Choube, D.P. Kothari. 2000. Line switching for alleviating overloads under line outage condition taking bus voltage limits into account. International Journal of Electrical Power & Energy Systems, 22(3):213-21, https://doi.org/10.1016/S0142-0615(99)00044-7.
  • [8] Arya L.D., S.C. Choube, K.S. Mehta, K.N. Pawar, D.P. Kothari. 1995. Post contingency line switching for overload alleviation or rotation. Electric Machines&Power Systems, 23(3):345-52, https://doi. org/10.1080/07313569508955628.
  • [9] Bialek J. 1996. Identification of source-sink connections in transmission networks. In: Fourth International Conference on Power System Control and Management. IEE: 200-204.
  • [10] Bialek J. 1996. Tracing the flow of electricity. IEE Proc., Gener. Transm. Distrib., 143(4):313, https://doi.org/10.1049/ip-gtd:19960461.
  • [11] Bialek J. 1996. Tracing the generators' output. [In:] International Conference on Opportunities and Advances in International Power Generation. IEE: 133-136.
  • [12] Burke D.J., M.J. O'Malley. 2010. Maximizing Firm Wind Connection to Security Constrained Transmission Networks. IEEE Trans. Power Syst., 25(2):749-59, https://doi.org/10.1109/TPWRS.2009.2033931.
  • [13] Ding L., P. Hu, Z.-W. Liu, G. Wen. 2021. Transmission Lines Overload Alleviation: Distributed Online Optimization Approach. IEEE Trans. Ind. Inf., 17(5):3197-208, https://doi.org/10.1109/TII.2020.3009749.
  • [14] Douglass D.A., D.C. Lawry, E. Abdel-Aty, E.C. Bascon. 2000. Dynamic thermal rating realize circuit load limits. IEEE Computer Applications in Power. January: 38-44.
  • [15] Dutta S., S.P. Singh. 2008. Optimal Rescheduling of Generators for Congestion Management Based on Particle Swarm Optimization. IEEE Trans. Power Syst., 23(4):1560-9, https://doi.org/10.1109/ TPWRS.2008.922647.
  • [16] European Parliament. Regulation (EU) 2019/943 of the European Parliament and of the Council of 5 June 2019 on the internal market for electricity: Regulation (EU) 2019/943.
  • [17] Fan M., L. Huang. 2019. Generator Redispatch Control Strategy with Big Data for Power Systems with Renewable Energy. [In:] IEEE Power & Energy Society General Meeting (PESGM). IEEE: 1-5.
  • [18] Granelli G., M. Montagna, F. Zanellini, P. Bresesti, R. Vailati, M. Innorta. 2006. Optimal network reconfiguration for congestion management by deterministic and genetic algorithms. Electric Power Systems Research, 76(6-7):549-56, https://doi.org/10.1016/J.EPSR.2005.09.014.
  • [19] Gupta A.K., D. Kiran, A.R. Abhyankar. 2016. Flexibility in transmission switching for congestion management. [In:] National Power Systems Conference (NPSC). IEEE: 1-5.
  • [20] Gupta M., V. Kumar, G.K. Banerjee, N.K. Sharma. 2017. Mitigating Congestion in a Power System and Role of FACTS Devices. Advances in Electrical Engineering: 1-7, https://doi.org/10.1155/2017/4862428.
  • [21] Hedman K.W., R.P. O'Neill, E.B. Fisher, S.S. Oren. 2009. Optimal Transmission Switching With Contingency Analysis. IEEE Trans. Power Syst., 24(3):1577-86, https://doi.org/10.1109/TPWRS.2009.2020530.
  • [22] Hong Y.-Y. 1996. An enhanced expert system with fuzzy reasoning for line flow control in power systems. Electric Power Systems Research, 39(1):1-8, https://doi.org/10.1016/S0378-7796(96)01088-7.
  • [23] https://heimdallpower.com/.
  • [24] Jiandong D., C. Wenji, X. Bing. Line Overload Shedding Strategy Based on Improved Power Flow Tracking Algorithm. 14th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE: 2315-2320.
  • [25] Jin X., Y. Mu, H. Jia, Q. Wu, T. Jiang, M. Wang, et al. 2019. Alleviation of overloads in transmission network: A multi-level framework using the capability from active distribution network. International Journal of Electrical Power&Energy Systems, 112:232-51, https://doi.org/10.1016/j.ijepes.2019.05.007.
  • [26] Jinlong Z., Z. Huilin, B. Yanhong, D. Fangwei, Y. Yingxuan, Z. Haotian. On-Line Assessment Method of Available Transfer Capability Considering Uncertainty of Renewable Energy Power Generation. [In:] 2020 Asia Energy and Electrical Engineering Symposium (AEEES). IEEE: 43-48.
  • [27] Kacejko P., P. Pijarski. 2013. Generation Level Matching to the Transmission Capability of Overhead Lines. Acta Energetica, 1(14):43-9, https://doi.org/10.12736/issn.2300-3022.2013104.
  • [28] Kattuman P.A., R.J. Green, J.W. Bialek. 2004. Allocating electricity transmission costs through tracing: a game-theoretic rationale. Operations Research Letters, 32(2):114-20, https://doi.org/10.1016/ S0167-6377(03)00095-6.
  • [29] Khan B., O.P. Mahela, S. Padmanaban, H.H. Alhelou (eds.). 2022. Deregulated electricity structures and smart grids. Boca Raton, FL: CRC Press.
  • [30] KIOS Research Center. 2023. IEEE 118-bus modified test system. Available from: https://www.kios.ucy.ac.cy/testsystems/index.php/ieee-118-bus-modified-test-system/.
  • [31] Kisała A., P. Kacejko, P. Kisała. 2018. Układ opto-mechaniczny do pomiaru temperatury i wydłużenia przewodu napowietrznej linii elektroenergetycznej, patent nr 227671. Wiadomości Urzędu Patentowego, 1: 25.
  • [32] Kou X., F. Li. 2020. Interval Optimization for Available Transfer Capability Evaluation Considering Wind Power Uncertainty. IEEE Trans. Sustain. Energy, 11(1):250-9, https://doi.org/10.1109/ TSTE.2018.2890125.
  • [33] Kumar K., D. Zindani, J.P. Davim. 2020. Optimizing engineering problems through heuristic techniques. Boca Raton: CRC Press.
  • [34] Kuruseelan S. 2014. A Novel Method for Generation Rescheduling to Alleviate Line Overloads. IJOEE 2014, https://doi.org/10.12720/IJOEE.2.2.167-171.
  • [35] Labed I., D. Labed. 2019. Extreme learning machine‐based alleviation for overloaded power system. IET gener. transm. distrib. 13(22):5058-70, https://doi.org/10.1049/iet-gtd.2019.0531.
  • [36] Lenoir L., I. Kamwa, L-A. Dessaint. 2009. Overload Alleviation With Preventive-Corrective Static Security Using Fuzzy Logic. IEEE Trans. Power Syst., 24(1):134-45, https://doi.org/10.1109/ TPWRS.2008.2008678.
  • [37] Li C.-Y., C.-W. Liu. 2002. A new algorithm for available transfer capability computation. International Journal of Electrical Power & Energy Systems, 24(2):159-66, https://doi.org/10.1016/S0142-0615(01)00023-0.
  • [38] Li S., L. Wang, X. Gu, H. Zhao, Y. Sun. 2022. Optimization of loop-network reconfiguration strategies to eliminate transmission line overloads in power system restoration process with wind power integration. International Journal of Electrical Power & Energy Systems, 134:107351, https://doi.org/10.1016/j.ijepes.2021.107351.
  • [39] Linnemann C., D. Echternacht, C. Breuer, A. Moser. 2011. Modeling optimal redispatch for the European Transmission grid. [In:] IEEE Trondheim PowerTech. IEEE: 1-8.
  • [40] Liu Z., F. Wang, J. Qiu, F. Chen, Z. Lu, M. Chen, et al. 2021. Emergency Control Strategy for Line Overload Considering Power Source and Load Fluctuation. IOP Conf. Ser.: Earth Environ. Sci., 687(1):12124, https://doi.org/10.1088/1755-1315/687/1/012124.
  • [41] Maharana M.K., K.S. Swarup. 2009. Transmission line overload alleviation due to contingency based on DAG assisted PSO method. IJPEC, 1(4):363, https://doi.org/10.1504/IJPEC.2009.029054.
  • [42] Makram E.B., K.P. Thorton, H.E. Brown. 1989. Selection of lines to be switched to eliminate overloaded lines using a Z-matrix method. IEEE Trans. Power Syst., 4(2):653-61, https://doi.org/10.1109/59.193839.
  • [43] Manohar P., P. Rajesh, H. F. Shajin. 2022. A Comprehensive Review of Congestion Management in Power System. IJIE 14(6). https://doi.org/10.30880/ijie.2022.14.06.030.
  • [44] Materiały firmy The Valley Group, INC USA (www.cat-1.com).
  • [45] Mohammed O.O., M.W. Mustafa, D.S.S. Mohammed, A.O. Otuoze. 2019. Available transfer capability calculation methods: A com-prehensive review. Int. Trans. Electr. Energ. Syst., 29(6), https://doi. org/10.1002/2050-7038.2846.
  • [46] Müller N., V.H. Quintana. 1989. Line and shunt switching to alleviate overloads and voltage violations in power networks. IEE Proc. C Gener. Transm. Distrib. UK, 136(4):246, https://doi.org/10.1049/ip-c.1989.0032.
  • [47] Ou Y., C. Singh. 2002. Assessment of Available Transfer Capability and Margins. IEEE Power Eng. Rev., 22(5):69, https://doi.org/10.1109/ MPER.2002.4312218.
  • [48] Ou Y., C. Singh. 2003. Calculation of risk and statistical indices associated with available transfer capability. IEE Proc., Gener. Transm. Distrib., 150(2):239, https://doi.org/10.1049/ip-gtd:20030024.
  • [49] Pesaran, M. Hajiabbas, B. Mohammadi-Ivatloo. 2020. Optimization of power system problems: Methods, algorithms and MATLAB Codes. Switzerland: Springer Nature.
  • [50] Pijarski P., P. Kacejko. 2014. Change in the generation distribution under the emergency overload conditions in a transmis-sion power system. [In:] Lorenc J., A. Demenko (editors). Blackout and the national power system: 2014 edition. Poznań: Scientific Publishers OWN: 225-235.
  • [51] Pijarski P. 2011. Dynamic Fitting of Generation Level to Transmission Capacity of Overhead Lines (doctoral thesis). Lublin, Poland: Lublin University of Technology.
  • [52] Pijarski P.D. 2019. Optymalizacja heurystyczna w ocenie warunków pracy i planowania rozwoju systemu elektroenergetycznego. Lublin: Wydawnictwo Politechniki Lubelskiej.
  • [53] Pillay A., S. Prabhakar Karthikeyan, D.P. Kothari. Congestion management in power systems - A review. International Journal of Electrical Power & Energy Systems, 70:83-90, https://doi.org/10.1016/j.ijepes.2015.01.022.
  • [54] Radosavljević J. 2018. Metaheuristic optimization in power engineering. London, United Kingdom: The Institution of Engineering and Technology.
  • [55] Rao R.V., V.J. Savsani, D.P. Vakharia. 2012. Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems. Information Sciences 183(1):1-15, https://doi. org/10.1016/j.ins.2011.08.006.
  • [56] Ren J., M. Yan. 2013. Emergency control strategy for line overload based on power flow tracing algorithm. Power grid technology, 37(2):392-7.
  • [57] Ronellenfitsch H., M. Timme, D.A. Witthaut. 2016. Dual Method for Computing Power Transfer Distribution Factors. IEEE Trans. Power Syst.:1, https://doi.org/10.1109/TPWRS.2016.2589464.
  • [58] Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2019/943 z dnia 5 czerwca 2019 r. w sprawie rynku wewnętrznego energii elektrycznej.
  • [59] Saharuddin N., I.A. Zainal, H. Mokhlis, A. Abdullah, K. Naidu. 2018. A Power System Network Splitting Strategy Based on Contingency Analysis. Energies, 11(2):434, https://doi.org/10.3390/en11020434.
  • [60] Sankaramurthy P., B. Chokkalingam, S. Padmanaban, Z. Leonowicz, Y. Adedayo. 2019. Rescheduling of Generators with Pumped Hydro Storage Units to Relieve Congestion Incorporating Flower Pollination Optimization. Energies, 12(8):1477, https://doi.org/10.3390/en12081477.
  • [61] Saranya R., K. Balamurugan, M. Karuppasamy. 2015. Artificial Bee Colony Algorithm Based Congestion Management in Restructured Power System. Indian Journal of Science and Technology, 8(S7):171, https://doi.org/10.17485/ijst/2015/v8iS7/69049.
  • [62] Shaaban M., W. Li, Z. Yan, Y. Ni, F.F. Wu. 2003. Calculation of total transfer capability incorporating the effect of reactive power. Electric Power Systems Research, 64(3):181-8, https://doi.org/10.1016/ S0378-7796(02)00189-X.
  • [63] Shandilya A., H. Gupta, J. Sharma. 1993. Method for generation rescheduling and load shedding to alleviate line overloads using local optimisation. IEE Proc. C Gener. Transm. Distrib. UK 140(5):337, https://doi.org/10.1049/ip-c.1993.0050.
  • [64] Shao W., V. Vittal. 2005. Corrective Switching Algorithm for Relieving Overloads and Voltage Violations. IEEE Trans. Power Syst., 20(4):1877–85, https://doi.org/10.1109/TPWRS.2005.857931.
  • [65] Tuglie E. de, M. Dicorato, M. La Scala, P. Scarpellini. 2000. A static optimization approach to assess dynamic available transfer capability. IEEE Trans. Power Syst., 15(3):1069-76, https://doi.org/10.1109/59.871735.
  • [66] Udupa A.N., G.K. Purushothama, K. Parthasarathy, D. Thukaram. 2001. A fuzzy control for network overload alleviation. International Journal of Electrical Power & Energy Systems, 23(2):119-28, https://doi. org/10.1016/S0142-0615(00)00049-1.
  • [67] Ullah K., A. Basit, Z. Ullah, R. Asghar, S. Aslam, A. Yafoz. 2022. Line Overload Alleviations in Wind Energy Integrated Power Systems Using Automatic Generation Control. Sustainability, 14(19):11810, https://doi.org/10.3390/su141911810.
  • [68] van den Bergh K., D. Couckuyt, E. Delarue, W. D’haeseleer. 2015. Redispatching in an interconnected electricity system with high renewables penetration. Electric Power Systems Research, 127:64-72, https://doi.org/10.1016/j.epsr.2015.05.022.
  • [69] Venkatesh P., R. Gnanadass, D.N.P. Padhy. 2004. Available Transfer Capability Determination Using Power Transfer Distribution Factors. International Journal of Emerging Electric Power Systems, 1(2), https://doi.org/10.2202/1553-779X.1009.
  • [70] Verma S., S. Saha, V. Mukherjee. 2018. Optimal rescheduling of real power generation for congestion management using teaching-learning-based optimization algorithm. Journal of Electrical Systems and Information Technology, 5(3):889-907, https://doi.org/10.1016/j.jesit.2016.12.008.
  • [71] Wang B., X. Fang, X. Zhao, H. Chen. 2015. Bi-Level Optimization for Available Transfer Capability Evaluation in Deregulated Electricity Market. Energies, 8(12):13344-60, https://doi.org/10.3390/en81212370.
  • [72] Wang K., L. Kang, S. Yang. 2022. A Coordination Optimization Method for Load Shedding Considering Distribution Network Reconfiguration. Energies, 15(21):8178, https://doi.org/10.3390/en15218178.
  • [73] Wang S., S. Gao. 2019. Available transfer capability analysis method of AC–DC power system based on security region. J. eng. (16):2386-90, https://doi.org/10.1049/joe.2018.8529.
  • [74] Xu Y., J. Bi, S. Fan. 2017. Line overload emergency control based on power sensitivity and minimized economic compensation. Power Automation Equipment, 37(01):118-23.
  • [75] Yuan C., C. Hu, T. Li. Review of Congestion Management Methods for Power Systems. IOP Conf. Ser.: Earth Environ. Sci. 2019;233:32025, https://doi.org/10.1088/1755-1315/233/3/032025.
  • [76] Yuan Y., J. Kubokawa, T. Nagata, H. Sasaki. 2003. A solution of dynamic available transfer capability by means of stabilit constrained optimal power flow. [In:] IEEE Bologna Power Tech Conference Proceedings. IEEE: 191-198.
  • [77] Yue X., T. Wang, X. Gu, et al. 2017. Control strategy for line overload based on sensitivity and power flow entropy. Power System Protection and Control, 45:58-66.
  • [78] Yusoff N.I., A.A.M. Zin, A. Bin Khairuddin. Congestion management in power system: A review. In: 2017 3rd International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET). IEEE: 22-27.
  • [79] Ziemianek S. 2003. Modele matematyczne alokacji strat przesyłu mocy metodami śledzenia przepływów mocy czynnej i biernej. Warszawa: Elektryka z. 127, OWPW.
  • [80] Żurowski J. 2010. Dynamiczna obciążalność linii jako narzędzie do prowadzenia ruchu sieci przy zwiększonej obciążalności prądowej. Wiadomości Elektrotechniczne, 7:27-31
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27706088-b186-462d-bf69-88cafca8a6d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.