PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Imaging methods of detecting defects in photovoltaic solar cells and modules: a survey

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In pursuit of increased efficiency and longer operating times of photovoltaic systems, one may encounter numerous difficulties in the form of defects that occur in both individual solar cells and whole modules. The causes of the occurrence range from structural defects to damage during assembly or, finally, wear and tear of the material due to operation. This article provides an overview of modern imaging methods used to detect various types of defects found in photovoltaic cells and panels. The first part reviews typical defects. The second part of the paper reviews imaging methods with examples of the authors’ own test results. The article concludes with recommendations and tables that provide a kind of comprehensive guide to the methods described, depending on the type of defects detected, the range of applicability, etc. The authors also shared their speculations on current trends and the possible path for further development and research in the field of solar cell defect analysis using imaging.
Rocznik
Strony
381--401
Opis fizyczny
Bibliogr. 65 poz., rys., tab.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Electronic, Photonics and Microsystems, Department of Electronic and Photonic Metrology, Division of Thin Film Technologies, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Electronic, Photonics and Microsystems, Department of Electronic and Photonic Metrology, Division of Thin Film Technologies, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Electronic, Photonics and Microsystems, Department of Electronic and Photonic Metrology, Division of Thin Film Technologies, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Electronic, Photonics and Microsystems, Department of Electronic and Photonic Metrology, Division of Thin Film Technologies, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] Abdelhamid, M., Singh, R. & Omar, M. (2014). Review of Microcrack Detection Techniques for Silicon Solar Cells. IEEE Journal of Photovoltaics, 4(1), 514-524. https://doi.org/10.1109/JPHOTOV.2013.2285622
  • [2] Ahmed, B., Necaibia, A., Slimani, A., Dabou, R., Ziane, A. & Sahouane, N. (2019). A Demonstrative Overview of Photovoltaic Systems Faults. 2019 1st Global Power, Energy and Communication Conference (GPECOM), 281-285. https://doi.org/10.1109/GPECOM.2019.8778567
  • [3] Ashraf, A., Davis, K. O., Ogutman, K., Schoenfeld, W. V. & Eisaman, M. D. (2015). Hyperspectral laser beam induced current system for solar cell characterization. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 1-4. https://doi.org/10.1109/PVSC.2015.7356129
  • [4] Bachmann, J., Buerhop-Lutz, C., Deibel, C., Riedel, I., Hoppe, H., Brabec, C. J. & Dyakonov, V. (2010). Organic solar cells characterized by dark lock-in thermography. Solar Energy Materials and Solar Cells, 94(4), 642-647. https://doi.org/10.1016/j.solmat.2009.11.006
  • [5] Bartler, A., Mauch, L., Yang, B., Reuter, M. & Stoicescu, L. (2018). Automated Detection of Solar Cell Defects with Deep Learning. 2018 26th European Signal Processing Conference (EUSIPCO), 2035-2039. https://doi.org/10.23919/EUSIPCO.2018.8553025
  • [6] Bedrich, K. G., Luo, W., Pravettoni, M., Chen, D., Chen, Y., Wang, Z., Verlinden, P. J., Hacke, P., Feng, Z., Chai, J., Wang, Y., Aberle, A. G. & Khoo, Y. S. (2018). Quantitative Electroluminescence Imaging Analysis for Performance Estimation of PID-Influenced PV Modules. IEEE Journal of Photovoltaics, 8(5), 1281-1288. https://doi.org/10.1109/JPHOTOV.2018.2846665
  • [7] Berardone, I., Lopez Garcia, J. & Paggi, M. (2018). Analysis of electroluminescence and infrared thermal images of monocrystalline silicon photovoltaic modules after 20 years of outdoor use in a solar vehicle. Solar Energy, 173, 478-486. https://doi.org/10.1016/j.solener.2018.07.055
  • [8] Bhoopathy, R., Kunz, O., Juhl, M., Trupke, T. & Hameiri, Z. (2018). Inspecting series resistance effects and bypass diode failure using contactless outdoor photoluminescence imaging. 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), 0377-0380. https://doi.org/10.1109/PVSC.2018.8547301
  • [9] Bokalič, M., Krašovec, U. O. & Topič, M. (2013a). Electroluminescence as a spatial characterisation technique for dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications, 21(5), 1176-1180. https://doi.org/10.1002/pip.2224
  • [10] Bokalič, M., Krašovec, U. O. & Topič, M. (2013b). Electroluminescence as a spatial characterisation technique for dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications, 21(5), 1176-1180. https://doi.org/10.1002/pip.2224
  • [11] Breitenstein, O., Rakotoniaina, J. P., Al Rifai, M. H. & Werner, M. (2004). Shunt types in crystalline silicon solar cells. Progress in Photovoltaics: Research and Applications, 12(7), 529-538. https://doi.org/10.1002/pip.544
  • [12] Brooks, A. E., Cormode, D., Cronin, A. D. & Kam-Lum, E. (2015, December 14). PV system power loss and module damage due to partial shade and bypass diode failure depend on cell behavior in reverse bias. 2015 IEEE 42nd Photovoltaic Specialist Conference, PVSC 2015. https://doi.org/10.1109/PVSC.2015.7356290
  • [13] Buerhop, C., Stroyuk, O., Zöcklein, J., Pickel, T., Hauch, J. & Peters, I. M. (2022). Wet leakage resistance development of modules with various backsheet types. Progress in Photovoltaics: Research and Applications, 30(8), 938-947. https://doi.org/10.1002/pip.3481
  • [14] Bulle-Lieuwma, C. W. T., Van Gennip, W. J. H., Van Duren, J. K. J., Jonkheijm, P., Janssen, R. A. J. & Niemantsverdriet, J. W. (n.d.). Characterization of polymer solar cells by TOF-SIMS depth profiling.
  • [15] Deceglie, M. G., Emmer, H. S., Holman, Z. C., Descoeudres, A., De Wolf, S., Ballif, C. & Atwater, H. A. (2014). Scanning Laser-Beam-Induced Current Measurements of Lateral Transport Near-Junction Defects in Silicon Heterojunction Solar Cells. IEEE Journal of Photovoltaics, 4(1), 154-159. https://doi.org/10.1109/JPHOTOV.2013.2289353
  • [16] Dhimish, M. & Kettle, J. (2022). Impact of Solar Cell Cracks Caused During PotentialInduced Degradation (PID) Tests. IEEE Transactions on Electron Devices, 69(2), 604-612. https://doi.org/10.1109/TED.2021.3135365
  • [17] Doll, B., Hepp, J., Hoffmann, M., Schuler, R., Buerhop-Lutz, C., Peters, I. M., Hauch, J. A., Maier, A. & Brabec, C. J. (2021). Photoluminescence for Defect Detection on Full-Sized Photovoltaic Modules. IEEE Journal of Photovoltaics, 11(6), 1419-1429. https://doi.org/10.1109/JPHOTOV.2021.3099739
  • [18] Du, B., Yang, R., He, Y., Wang, F. & Huang, S. (2017a). Nondestructive inspection, testing and evaluation for Si-based, thin film and multi-junction solar cells: An overview. Renewable and Sustainable Energy Reviews, 78, 1117-1151. https://doi.org/10.1016/j.rser.2017.05.017
  • [19] Du, B., Yang, R., He, Y., Wang, F. & Huang, S. (2017b). Nondestructive inspection, testing and evaluation for Si-based, thin film and multi-junction solar cells: An overview. In Renewable and Sustainable Energy Reviews (Vol. 78, pp. 1117-1151). Elsevier Ltd. https://doi.org/10.1016/j.rser.2017.05.017
  • [20] Dubey, R., Vasi, J., Chattopadhyay, S., Zachariah, S., Rambabu, S., Singh, H. K., Kottantharayil, A., Arora, B. M., Narasimhan, K. L. & Shiradkar, N. (2018). On-Site Electroluminescence Study of Field-Aged PV Modules. 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), 0098-0102. https://doi.org/10.1109/PVSC.2018.8548080
  • [21] Ebner, R., Kubicek, B. & Ujvari, G. (2013). Non-destructive techniques for quality control of PV modules: Infrared thermography, electro- and photoluminescence imaging. IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society, 8104-8109. https://doi.org/10.1109/IECON.2013.6700488
  • [22] Eder, G., Voronko, Y., Hirschl, C., Ebner, R., Újvári, G. & Mühleisen, W. (2018). Non-Destructive Failure Detection and Visualization of Artificially and Naturally Aged PV Modules. Energies, 11(5), 1053. https://doi.org/10.3390/en11051053
  • [23] El-Rashidy, M. A. (2022). An efficient and portable solar cell defect detection system. Neural Computing and Applications, 34(21), 18497-18509. https://doi.org/10.1007/s00521-022-07464-2
  • [24] Elrawemi, M., Blunt, L., Fleming, L., Sweeney, F. & Robbins, D. (2014). Defect detection in thin-film photovoltaics; Towards improved efficiency and longevity. 2014 5th International Renewable Energy Congress (IREC), 1-5. https://doi.org/10.1109/IREC.2014.6827021
  • [25] Fairbrother, A., Boyd, M., Lyu, Y., Avenet, J., Illich, P., Wang, Y., Kempe, M., Dougherty, B., Bruckman, L. & Gu, X. (2018). Differential degradation patterns of photovoltaic backsheets at the array level. https://www.elsevier.com/open-access/userlicense/1.0/
  • [26] Feklisova, O. V., Orlov, V. I. & Yakimov, E. B. (2015). EBIC and LBIC investigations of dislocation trails in Si. Physica Status Solidi c, 12(8), 1081-1084. https://doi.org/10.1002/pssc.201400223
  • [27] Frazão, M., Silva, J. A., Lobato, K. & Serra, J. M. (2017). Electroluminescence of silicon solar cells using a consumer grade digital camera. Measurement, 99, 7-12. https://doi.org/10.1016/j.measurement.2016.12.017
  • [28] Gabor, A. M. & Knodle, P. (2021). UV Fluorescence for Defect Detection in Residential Solar Panel Systems. 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC), 2575-2579. https://doi.org/10.1109/PVSC43889.2021.9518884
  • [29] Gagliardi, M. & Paggi, M. (2019). Multiphysics analysis of backsheet blistering in photovoltaic modules. Solar Energy, 183, 512-520. https://doi.org/10.1016/j.solener.2019.03.050
  • [30] Gerber, A., Huhn, V., Tran, T. M. H., Siegloch, M., Augarten, Y., Pieters, B. E. & Rau, U. (2015). Advanced large area characterization of thin-film solar modules by electroluminescence and thermography imaging techniques. Solar Energy Materials and Solar Cells, 135, 35-42. https://doi.org/10.1016/j.solmat.2014.09.020
  • [31] Gupta, V., Sharma, M., Pachauri, R. & Babu, K. N. D. (2022). Impact of hailstorm on the performance of PV module: a review. In Energy Sources, Part A: Recovery, Utilization and Environmental Effects (Vol. 44, Issue 1, pp. 1923-1944). Taylor and Francis Ltd. https://doi.org/10.1080/15567036.2019.1648597
  • [32] Harvey, S. P. (2018). Understanding Chemical Inhomogeneities and Cation Gradients in Perovskite Photovoltaics with TOF-SIMS. 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), 2543-2546. https://doi.org/10.1109/PVSC.2018.8548045
  • [33] Karim, I. A. (2015). Fault analysis and detection techniques of solar cells and PV modules. 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), 1-4. https://doi.org/10.1109/ICEEICT.2015.7307349
  • [34] Kherici, Z., Cheghib, H., Kahoul, N., Youness, M., Affari, B. C. & Hazem, T. (2020, October 29). Failure modes of standard photovoltaic modules in Sahara Desert. 11th International Renewable Energy Congress, IREC 2020. https://doi.org/10.1109/IREC48820.2020.9310409
  • [35] Köntges, M., Kajari-Schröder, S. & Kunze, I. (2013). Crack statistic for wafer-based silicon solar cell modules in the field measured by UV fluorescence. IEEE Journal of Photovoltaics, 3(1), 95-101. https://doi.org/10.1109/JPHOTOV.2012.2208941
  • [36] Kontges, M., Morlier, A., Eder, G., Fleis, E., Kubicek, B. & Lin, J. (2020). Review: Ultraviolet Fluorescence as Assessment Tool for Photovoltaic Modules. IEEE Journal of Photovoltaics, 10(2), 616-633. https://doi.org/10.1109/JPHOTOV.2019.2961781
  • [37] Köntges, Mark, Kurtz, S., Jahn, U., Berger, K. A., Kato, K., Friesen, T., Liu, H., van Iseghem, M., Wohlgemuth, J., Miller, D., Kempe, M., Hacke, P., Reil, F., Bogdanski, N., Herrmann, W., BuerhopLutz, C., Razongles, G. & Friesen, G. (2014). Review of Failures of Photovoltaic Modules Final (IEA PVPS Task 13 External final report IEA-PVPS, Ed.). INTERNATIONAL ENERGY AGENCY PHOTOVOLTAIC POWER SYSTEMS PROGRAMME.
  • [38] Kumar, P., Ghosekar, I. & Narayan, K. S. (2021). High-Speed Laser Beam Induced Current Imaging: A Complementary Quantitative Diagnostic Tool for Modules. IEEE Journal of Photovoltaics, 11(6), 1436-1445. https://doi.org/10.1109/JPHOTOV.2021.3106894
  • [39] Luo, W., Khoo, Y. S., Hacke, P., Naumann, V., Lausch, D., Harvey, S. P., Singh, J. P., Chai, J., Wang, Y., Aberle, A. G. & Ramakrishna, S. (2017). Potential-induced degradation in photovoltaic modules: a critical review. Energy & Environmental Science, 10(1), 43-68. https://doi.org/10.1039/C6EE02271E
  • [40] Michl, B., Padilla, M., Geisemeyer, I., Haag, S. T., Schindler, F., Schubert, M. C. & Warta, W. (2014). Imaging Techniques for Quantitative Silicon Material and Solar Cell Analysis. IEEE Journal of Photovoltaics, 4(6), 1502-1510. https://doi.org/10.1109/JPHOTOV.2014.2358795
  • [41] Moralejo, B., González, M. A., Jiménez, J., Parra, V., Martínez, O., Gutiérrez, J. & Charro, O. (2010). LBIC and Reflectance Mapping of Multicrystalline Si Solar Cells. Journal of Electronic Materials, 39(6), 663-670. https://doi.org/10.1007/s11664-010-1174-8
  • [42] Moretón, R., Lorenzo, E. & Narvarte, L. (2015). Experimental observations on hot-spots and derived acceptance/rejection criteria. Solar Energy, 118, 28-40. https://doi.org/10.1016/j.solener.2015.05.009
  • [43] Morlier, A., Siebert, M., Kunze, I., Mathiak, G. & Kontges, M. (2017). Detecting Photovoltaic Module Failures in the Field During Daytime With Ultraviolet Fluorescence Module Inspection. IEEE Journal of Photovoltaics, 7(6), 1710-1716. https://doi.org/10.1109/JPHOTOV.2017.2756452
  • [44] Naumann, V., Lausch, D., Großer, S., Werner, M., Swatek, S., Hagendorf, C. & Bagdahn, J. (2013). Microstructural Analysis of Crystal Defects Leading to Potential-Induced Degradation (PID) of Si Solar Cells. Energy Procedia, 33, 76-83. https://doi.org/10.1016/j.egypro.2013.05.042
  • [45] Norrman, K. & Krebs, F. C. (2006). Lifetimes of organic photovoltaics: Using TOF-SIMS and 18O2 isotopic labelling to characterise chemical degradation mechanisms. Solar Energy Materials and Solar Cells, 90(2), 213-227. https://doi.org/10.1016/j.solmat.2005.03.004
  • [46] Oprea, M. I., Spataru, S. V., Sera, D., Poulsen, P. B., Thorsteinsson, S., Basu, R., Andersen, A. R. & Frederiksen, K. H. B. (2016). Detection of potential induced degradation in c-Si PV panels using electrical impedance spectroscopy. Conference Record of the IEEE Photovoltaic Specialists Conference, 2016-November, 1575-1579. https://doi.org/10.1109/PVSC.2016.7749885
  • [47] Orlov, V. I. & Yakimov, E. B. (2016). Extended defect study in Si: EBIC versus LBIC. Superlattices and Microstructures, 99, 202-207. https://doi.org/10.1016/j.spmi.2016.02.040
  • [48] Pakhomov, G. L., Travkin, V. V., Drozdov, M. N., Sachkov, Y. I. & Yunin, P. A. (2022). Small-molecule heterojunctions: Stability to ageing under sunlight. Applied Surface Science, 578, 152084. https://doi.org/10.1016/j.apsusc.2021.152084
  • [49] Pingel, S., Frank, O., Winkler, M., Oaryan, S., Geipel, T., Hoehne, H. & Berghold, J. (2010). Potential induced degradation of solar cells and panels. Conference Record of the IEEE Photovoltaic Specialists Conference, 2817-2822. https://doi.org/10.1109/PVSC.2010.5616823
  • [50] Poulek, V., Safrankova, J., Cerna, L., Libra, M., Beranek, V., Finsterle, T. & Hrzina, P. (2021). PV Panel and PV Inverter Damages Caused by Combination of Edge Delamination, Water Penetration, and High String Voltage in Moderate Climate. IEEE Journal of Photovoltaics, 11(2), 561-565. https://doi.org/10.1109/JPHOTOV.2021.3050984
  • [51] Pozza, A. & Sample, T. (2016). Crystalline silicon PV module degradation after 20 years of field exposure studied by electrical tests, electroluminescence, and LBIC. Progress in Photovoltaics: Research and Applications, 24(3), 368-378. https://doi.org/10.1002/pip.2717
  • [52] Puranik, V. E. & Gupta, R. (2022). Analysis and insight of electroluminescence imaging in the assessment of potential-induced degradation in crystalline silicon photovoltaic module. Engineering Failure Analysis, 134, 106027. https://doi.org/10.1016/j.engfailanal.2022.106027
  • [53] Roeder, B., Schlothauer, J. & Koehl, M. (2011). Fluorescence imaging for analysis of the degradation of PV-modules. 2011 37th IEEE Photovoltaic Specialists Conference, 003606-003608. https://doi.org/10.1109/PVSC.2011.6185928
  • [54] Sadat, S. A., Vandewetering, N. & Pearce, J. M. (n.d.). Mechanical and economic analysis of conventional aluminum photovoltaic module frames, frames with side holes, and open-source downward-fastened frames for non-traditional racking.
  • [55] Saleem, M. & Al-Amri, F. G. (2020). Multi-attribute analysis of micro-defect detection techniques suitable for automated production line of solar wafers and cells. IET Renewable Power Generation, 14(9), 1413-1423. https://doi.org/10.1049/iet-rpg.2019.0904
  • [56] Sánchez, L. A., Moretón, A., Guada, M., Rodríguez-Conde, S., Martínez, O., González, M. A. & Jiménez, J. (2018a). Photoluminescence Imaging and LBIC Characterization of Defects in mc-Si Solar Cells. Journal of Electronic Materials, 47(9), 5077-5082. https://doi.org/10.1007/s11664-018-6381-8
  • [57] Sánchez, L. A., Moretón, A., Guada, M., Rodríguez-Conde, S., Martínez, O., González, M. A. & Jiménez, J. (2018b). Photoluminescence Imaging and LBIC Characterization of Defects in mc-Si Solar Cells. Journal of Electronic Materials, 47(9), 5077-5082. https://doi.org/10.1007/s11664-018-6381-8
  • [58] Santhakumari, M. & Sagar, N. (2019). A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques. In Renewable and Sustainable Energy Reviews (Vol. 110, pp. 83-100). Elsevier Ltd. https://doi.org/10.1016/j.rser.2019.04.024
  • [59] Schirripa Spagnolo, G., Del Vecchio, P., Makary, G., Papalillo, D. & Martocchia, A. (2012). A review of IR thermography applied to PV systems. 2012 11th International Conference on Environment and Electrical Engineering, 879-884. https://doi.org/10.1109/EEEIC.2012.6221500
  • [60] Sinha, A., Sastry, O. S. & Gupta, R. (2016). Nondestructive characterization of encapsulant discoloration effects in crystalline-silicon PV modules. Solar Energy Materials and Solar Cells, 155, 234-242. https://doi.org/10.1016/j.solmat.2016.06.019
  • [61] Slimani, W. (2021). Defect detection by automatic control in the photovoltaic panel manufacturing process. Journal of Mechanical Engineering Research and Developments, 44(5), 258-262.
  • [62] Sulas, D. B., Johnston, S. & Jordan, D. C. (2019). Comparison of photovoltaic module luminescence imaging techniques: Assessing the influence of lateral currents in high-efficiency device structures. Solar Energy Materials and Solar Cells, 192, 81-87. https://doi.org/10.1016/j.solmat.2018.12.022
  • [63] Vergura, S., Marino, F. & Carpentieri, M. (2015). Processing infrared image of PV modules for defects classification. 2015 International Conference on Renewable Energy Research and Applications, ICRERA 2015, 1337-1341. https://doi.org/10.1109/ICRERA.2015.7418626
  • [64] Yao, Y., Wang, G., Wu, F., Liu, D., Lin, C., Rao, X., Wu, R., Zhou, G. & Song, Q. (2017). The interface degradation of planar organic-inorganic perovskite solar cell traced by light beam induced current (LBIC). RSC Advances, 7(68), 42973-42978. https://doi.org/10.1039/C7RA06423C
  • [65] Zhaoning Song, Watthage, S. C., Tompkins, B. L., Liyanage, G. K., Phillips, A. B., Ellingson, R. J. & Heben, M. J. (2015). Spatially resolved characterization of solution processed perovskite solar cells using the LBIC technique. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 1-5. https://doi.org/10.1109/PVSC.2015.7355676
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-276a84a0-e806-48c7-8659-19b02e97d4b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.