PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experiments and numerical simulations of Lueders bands and Portevin–Le Chatelier effect in aluminium alloy AW5083

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work is focused on the modelling of experimental behaviour of a bone-shape sample made of aluminium alloy AW5083 under tension. This behaviour involves propagating instabilities, namely Lueders bands and the Portevin–Le Chatelier effect. A series of experiments was performed at room temperature for three loading rates, showing the instabilities and failure. In the paper a large strain thermovisco-plasticity model is proposed and used for finite element simulations. This model contains initial softening and a hardening function based on the Estrin–McCormick concept to represent serrations and travelling shear bands. The issues of instability sources and regularisation are considered. The predictive capabilities of the model are examined. The proposed models are able to reproduce both Lueders bands and the PLC effect. Simulation results show good agreement with experiments regarding force–displacement diagrams and temperature levels.
Rocznik
Strony
301--336
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
autor
  • Chair for Computational Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
autor
  • Institute of Mechanics, Department of Mechanical Engineering, TU Dortmund University, Dortmund, Germany
autor
  • Chair for Computational Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
autor
  • Institute of Mechanics, Department of Mechanical Engineering, TU Dortmund University, Dortmund, Germany
  • Division of Solid Mechanics, Department of Construction Sciences, Lund University, Lund, Sweden
autor
  • Chair for Computational Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
Bibliografia
  • 1. Y. Bergstrom, W. Roberts, The application of dislocation model to dynamic strain ageing in _-iron containing interstitial atoms, Acta Metallurgica, 19, 815–823, 1971.
  • 2. P.G. McCormic, Theory of flow localization due to dynamic strain aging, Acta Metallurgica, 36, 12, 3061–3067, 1988.
  • 3. W. Lüders, Über die Äusserung der Elasticität an stahlartigen Eisenstäben und Stahlstäben, und über eine beim Biegen solcher Stäbe beobachtete Molecularbewegung, Dingler’s Polytechnisches Journal, 5, 18–22, 1860.
  • 4. M.O. Eremin, A.O. Chirkov, M.V. Nadezhkin, L.B. Zuev, Microstructure-based finite-difference analysis of the plastic flow in low-carbon steel, European Journal of Mechanics - A/Solids, 93, article 104531, 2022.
  • 5. A. Portevin, F. Le Chatelier, Sur un phénomène observé lors de l’essai de traction d’alliages en cours de transformation, Comptes rendus de l’Académie des Sciences, 176, 507–510, 1923.
  • 6. A. Kozłowska, B. Grzegorczyk, M. Morawiec, A. Grajcar, Explanation of the PLC effect in advanced high-strength medium-Mn steels. A review, Materials, 12, 24, 1–14, 2019.
  • 7. A.H. Cottrell, B.A. Bilby, Dislocation theory of yielding and strain ageing of iron, Proceedings of the Physical Society. Section A, 62, 1, 49–62, 1949.
  • 8. A.H. Cottrell, A note on the Portevin–Le Chatelier effect, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 44, 829–832, 1953.
  • 9. H.B. Sun, F. Yoshida, X. Ma, T. Kamei, M. Ohmori, Finite element simulation on the propagation of Lüders band and effect of stress concentration, Materials Letters, 57, 21, 3206–3210, 2003.
  • 10. J. Coër, P.-Y. Manach, H. Laurent, M.C. Oliveira, L.F. Menezes, Piobert–Lüders plateau and Portevin–Le Chatelier effect in an Al–Mg alloy in simple shear, Mechanics Research Communications, 48, 1–7, 2013.
  • 11. M. Mazière, C. Luis, A. Marais, S. Forest, M. Gaspèrini, Experimental and numerical analysis of the Lüders phenomenon in simple shear, International Journal of Solids and Structures, 106–107, 305–314, 2017.
  • 12. S. Kyriakides, A. Ok, E. Corona, Localization and propagation of curvature under pure bending in steel tubes with Lüders bands, International Journal of Solids and Structures, 45, 10, 3074–3087, 2008.
  • 13. J.F. Hallai, s. kyriakides, On the effect of Lüders bands on the bending of steel tubes. Part I: Experiments, International Journal of Solids and Structures, 48, 3275–3284, 2011.
  • 14. J.F. Hallai, S. Kyriakides, On the effect of Lüders bands on the bending of steel tubes. Part II: Analysis, International Journal of Solids and Structures, 48, 3285–3298, 2011.
  • 15. G. Singh, T. Nanda, S.J. Miadad, N.C. Gorain, T. Venugopalan, B.R. Kumar, Correlation between Lüders band formation and precipitation kinetics behaviour during the industrial processing of interstitial free high strength steels, Archives of Civil and Mechanical Engineering, 19, 2, 469–483, 2019.
  • 16. X.G. Wang, B.B. He, C.H. Liu, C. Jiang, M.X. Huang, Extraordinary Lüdersstrain-rate in medium Mn steels, Materialia, 6, 100288, 2019.
  • 17. D.J. Lloyd, L.R. Morris, Luders band deformation in a fine grained aluminium alloy, Acta Metallurgica, 25, 8, 857–861, 1977.
  • 18. Y.-L. Cai, S.-L. Yang, S.-H. Fu, Q.-C. Zhang, The influence of specimen thickness on the Lüders effect of a 5456 Al-based alloy: experimental observations, Metals, 6, 5, 1–12, 2016.
  • 19. M. Rezaee-Hajidehi, S. Stupkiewicz, Gradient-enhanced model and its micromorphic regularization for simulation of Lüders-like bands in shape memory alloys, International Journal of Solids and Structures, 135, 208–218, 2018.
  • 20. B.S. Shariat, Y. Li, H. Yang, Y. Wang, Y. Liu, On the Lüders band formation and propagation in NiTi shape memory alloys, Journal of Materials Science & Technology, 116, 22–29, 2022.
  • 21. Y. Choi, J. Ha, M.-G. Lee, Y.P. Korkolis, Observation of Portevin–Le Chatelier effect in aluminum alloy 7075-W under a heterogeneous stress field, Scripta Materialia, 205, article 114178, 2021.
  • 22. Z. Hu, Y. Qi, X. Nie, H. Zhang, H. Zhu, The Portevin–Le Chatelier (PLC) effect in an Al-Cu aluminum alloy fabricated by selective laser melting, Materials Characterization, 178, article 111198, 2021.
  • 23. J. Min, J. Lin, B. Sun, Effect of strain rate on spatio-temporal behavior of Portevin–Le Châtelier bands in a twinning induced plasticity steel, Mechanics of Materials, 68, 164–175, 2014.
  • 24. A. Sarkar, S.A. Maloy, K.L. Murty, Investigation of Portevin-Le Chatelier effect in HT-9 steel, Materials Science and Engineering: A, 631, 120–125, 2015.
  • 25. X. Huang, X. Zhou, W. Wang, C. Cui, H. Ye, Z. Yang, Influence of microtwins on Portevin–Le Châtelier effect of a Ni-Co based disk superalloy, Scripta Materialia, 209, article 114385, 2022.
  • 26. N.A. Sene, P. Balland, K. Bouabdallah, Experimental study of Portevin–Le Châtelier bands on tensile and plane strain tensile tests, Archives of Civil and Mechanical Engineering, 18, 94–102, 2018.
  • 27. P.-Y. Manach, S. Thuillier, J.W. Yoon, J. Coër, H. Laurent, Kinematics of Portevin–Le Chatelier bands in simple shear, International Journal of Plasticity, 58, 66–83, 2014.
  • 28. B. Skoczen, J. Bielski, J. Tabin, Multiaxial constitutive model of discontinuous plastic flow at cryogenic temperatures, International Journal of Plasticity, 55, 198–218, 2014.
  • 29. J. Xu, G. Chen, S. Fu, Complexity analysis of the Portevin–Le Chatelier in an Al. alloy at different temperatures, Theoretical and Applied Mechanics Letters, 11, 2, article 100233, 2021.
  • 30. B. Reyne, P.-Y. Manach, N. Moës, Macroscopic consequences of Piobert–Lüders and Portevin–Le Chatelier bands during tensile deformation in Al-Mg alloys, Materials Science and Engineering: A, 746, 11, 187–196, 2019.
  • 31. S.C. Ren, T.F. Morgeneyer, M. Mazière, S. Forest, G. Rousselier, Effect of Lüders and Portevin–Le Chatelier localization bands on plasticity and fracture of notched steel specimens studied by DIC and FE simulations, International Journal of Plasticity, 136, article 102880, 2021.
  • 32. A. Yilmax, The Portevin–Le Chatelier effect: a review of experimental findings, Science and Technology of Advanced Materials, 12, 6, 2011.
  • 33. W.M. Wang, Stationary and Propagative Instabilities in Metals – a Computational Point of View, PhD dissertation, Delft University of Technology, Delft, 1997.
  • 34. M. Mucha, B. Wcisło, J. Pamin, Simulation of PLC effect using regularized large strain elasto-plasticity, Materials, 15, 12, 21 pp., article 4327, 2022.
  • 35. P.G. McCormick, C.P. Ling, Numerical modelling of the Portevin–Le Chatelier effect, Acta Metallurgica et Materialia, 43, 5, 1969–1977, 1995.
  • 36. S. Zhang, P.G. McCormick, Y. Estrin, The morphology of Portevin–Le Chatelier bands: finite element simulation for Al-Mg-Si, Acta Materialia, 49, 6, 1087–1094, 2001.
  • 37. T. Böhlke, G. Bondár, Y. Estrin, M.A. Lebyodkin, Geometrically non-linear modeling of the Portevin-–Le Chatelier effect, Computational Materials Science, 44, 4, 1076–1088, 2009.
  • 38. B. Klusemann, G. Fischer, T. Böhlke, B. Svendsen, Thermomechanical characterization of Portevin–Le Châtelier bands in AlMg3 (aa5754) and modeling based on a modified Estrin–McCormick approach, International Journal of Plasticity, 67, 192–216, 2015.
  • 39. L.Z. Mansouri, S. Thuillier, P.-Y. Manach, Thermo-mechanical modeling of Portevin–Le Châtelier instabilities under various loading paths, International Journal of Mechanical Sciences, 115, 676–688, 2016.
  • 40. P. Hähner, E. Rizzi, On the kinematics of Portevin–Le Chatelier bands: theoretical and numerical modelling, Acta Materialia, 51, 12, 3385–3397, 2003.
  • 41. E. Rizzi, P. Hähner, On the Portevin–Le Chatelier effect: theoretical modeling and numerical results, International Journal of Plasticity, 20, 1, 121–165, 2004.
  • 42. M. Mazière, J. Besson, S. Forest, B. Tanguy, H. Chalons, F. Vogel, Numerical aspects in the finite element simulation of the Portevin–Le Chatelier effect, Computer Methods in Applied Mechanics and Engineering, 199, 9, 734–754, 2010.
  • 43. B. Wcisło, J. Pamin, Local and non-local thermomechanical modeling of elastic-plastic materials undergoing large strains, International Journal for Numerical Methods in Engineering, 109, 1, 102–124, 2017.
  • 44. J. Pamin, B. Wcisło, K. Kowalczyk-Gajewska, Gradient-enhanced large strain thermoplasticity with automatic linearization and localization simulations, Journal of Mechanics of Materials and Structures, 12, 1, 123–146, 2017.
  • 45. M. Mucha, B. Wcisło, J. Pamin, Simulation of Lueders bands using regularized large strain elasto-plasticity, Archives of Mechanics, 73, 1, 83–117, 2021.
  • 46. J. Korlec, Automation of the Finite Element Method, [in:] P. Wriggers, editor, Nonlinear finite element methods, pages 483–508, Springer-Verlag, Berlin Heidelberg, 2008.
  • 47. J.C. Simo, C. Miehe, Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation, Computer Methods in Applied Mechanics and Engineering, 98, 1, 41–104, 1992.
  • 48. P.A. Wriggers, C. Miehe, M. Kleiber, J.C. Simo, On the coupled thermomechnical treatment of necking problems via finite element methods, International Journal for Numerical Methods in Engineering, 33, 869–883, 1992.
  • 49. J. Korlec, P. Wriggers, Automation of Finite Element Methods, Springer International Publishing Switzerland, Switzerland, 2016.
  • 50. S. Forest, E. Lorentz, Localization phenomena and regularization methods, [in:] J. Besson [ed.], Local Approach to Fracture, pp. 311–370, Les Presses de l’École des Mines, Paris, 2004.
  • 51. J. LeMonds, A. Needleman, Finite element analyses of shear localization in rate and temperature dependent solids, Mechanics of Materials, 5, 339–361, 1986.
  • 52. R.C. Batra, C.H. Kim, Effect of thermal conductivity on the initiation, growth and bandwidth of adiabatic shear bands, International Journal of Engineering Science, 29, 8, 949–960, 1991.
  • 53. A. Needleman, Material rate dependence and mesh sensitivity in localization problems, Computer Methods in Applied Mechanics and Engineering, 67, 69–86, 1988.
  • 54. J. C. Simo, Strain softening and dissipation: a unification of approaches, [in:] J. Mazars, Z.P. Bažant [eds.], Cracking and Damage: Strain Localization and Size Effect, pp. 440–461, York, Elsevier Applied Science, London, New York, 1989.
  • 55. W.M. Wang, L.J. Sluys, R. de Borst, Viscoplasticity for instabilities due to strain softening and strain-rate softening, International Journal for Numerical Methods in Engineering, 40, 20, 3839–3864, 1997.
  • 56. B. Wcisło, J. Pamin, K. Kowalczyk-Gajewska, Gradient-enhanced damage model for large deformations of elastic-plastic materials, Archives of Mechanics, 65, 5, 407–428, 2013.
  • 57. E.A. de Souza Neto, D. Peric, D.R.J. Owen, Computational methods for plasticity. Theory and applications, John Wiley & Sons, Chichester, UK, 2008.
  • 58. ALLOYS INTERNATIONAL, inc., https://alloysintl.com/. Accessed: 2021-11-17.
  • 59. G.I. Taylor, H. Quinney, The latent energy remaining in a metal after cold working, Proceedings of the Royal Society A, 143, 307–326, 1934.
  • 60. A. Menzel, P. Steinmann, On the spatial formulation of anisotropic multiplicative elasto–plasticity, Computer Methods in Applied Mechanics and Engineering, 192, 3431–3470, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-275e8a14-d748-4ddc-8710-ae36c674be5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.