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COMPARISON OF VECTOR CONTROL 
METHODS FOR ELIMINATION OF TORSIONAL 

VIBRATIONS IN AC DRIVES 

Abstract  
The paper compares three vector control strategies for elimination of torsion vibrations.  The first 

algorithm is based on classical IPD controller of the system with flexible coupling described in state 
space.  The second algorithm is based on force dynamics control and the third one exploits sliding 
mode control.  All three algorithms respect vector control of synchronous motor with permanent 
magnets.  Matlab-Simulink environment is used to evaluate performance of all three control 
algorithms.   

1. INTRODUCTION 
Mechanical coupling between motor shaft and load is composed of materials with some 

degree of elasticity.  This elasticity combined with inertia causes oscillation of the mechanical 
coupling which results in undesirable effect on drive’s control performance.   

2. MOTOR MODEL CONSIDERING MECHANICAL COUPLING 
WITH TORSION OSCILLATIONS 
For simulations standard model of synchronous motor with permanent magnets (SMPM) 

is used.  To ensure comparable conditions, similar to practical applications all three 
simulations contains three-phase voltage converter for SMPM control.  To analyze control 
system performances mathematical model of SMPM and flexible coupling is developed.  
Equations (1), (2) and (3) describe SMPM. 
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Block diagram of mechanical coupling, which is shown in Fig.1 is described by equations 
(5), (6) and (7).  Simplified model of flexible coupling doesn’t respects damping coefficient, 
which makes situation for control algorithms even worse due to fact that torsional oscillations 
are keeping their maximum value.  The blue blocks of Fig.1 introduce load side.  The brown 
blocks correspond to motor side mechanical parts.  Transfer function of mechanical coupling 
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is derived directly from Fig.1 using Mason’s formula and results in (6).  For shaft with 
circular cross section flexible coupling coefficient, Ks can be calculated as (4). 
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where D is diameter of shaft, G is modulus of elasticity and l is shaft length. 
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Fig. 1  Equivalent block diagram of flexible coupling between motor and load  
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where θ is position, index r is for rotor and L is index for load respectively. ω is speed in rad/s 
with the same indexing,  J is motor and load moment of inertia.  MeL is electromagnetic torque 
and MLs is torque generated by different value between rotor and load position.  This torque is 
proportional to the position displacement and can be expressed as : 

 

( ) ( )Ls s R L t R LM K θ θ K ω ω= − + −  (8) 
 

This is valid if coefficient Kt  is considered.  Further damping and friction are neglected in 
simulations.  Spring torque, MLs  is calculated as : 

 

( )Ls s R LM K θ θ= −  (9) 
 

3. TORSIONAL VIBRATIONS MINIMALIZATION ALGORITHMS 

I.  IPD regulator in state space for elimination of vibration  
 

The first method exploits control in state-space [1].  In this case, analogy of IPD regulator 
can be used.  Since this is a state-space control system of the fourth order (see Fig.2) feedbacks 
of four state variables are required.  To minimize number of sensors derivatives for speed are 
computed mathematically. 

Gains of feedback loops are adjusted to ensure the prescribed settling time.  Feedback 
gain values are determined using the pole placement method.  Transfer function of block 
diagram shown as Fig. 2 is obtained by Mason’s formula is fifth order. 
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Fig. 2  Block diagram for load angle control system vith IPD regulators   
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At first the ideal transfer function for the system of fifth order can by calculated by 
Dodd’s formula, (11) where n is the system order (in this case n = 5).  Comparison of the 
same degree coefficients in (10) and (11) gives parameters of K1,2,3,4 and Ki. 
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This system requires information about load angle, which is its disadvantage.  Therefore 
observer is designed to calculated load side parameters from rotor position and torque 
component of stator current, iq.  Observer of load state variables is based on real time model 
of two mass system [2]. System state equations are : 
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Matrix form of observer is defined as:   
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Subtracting observer equations from equations of the system forms dynamical error 
system with coefficients defined as: 
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Eigenvalues of the system matrix must have a negative real parts to ensure convergence 
of the state estimates toward real system variables.  If pole-placement method with multiple 
poles placed in ω=1/Tu is used then observer eigenvalues (18) can be determined by 
comparison with desired polynomial, (20) which results in: 
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Comparing the coefficients of the same degree (18) defines observer gains as: 
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Fig. 3.  Block diagram of load side variables observer 
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     It is clear that observer based on rotor angle and stator current torque component 
measurement produces all necessary informations about load side state variables.  Connection 
of these two models (model of flexible coupling a model of state-space observer) eliminates 
sensor on the load side.   
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Fig. 4  Currents, load and rotor position and difference between them IPD 
 
 

II.  Elimination of vibrations using Forced Dynamics Control  
 

Control system for elimination of torsional vibrations using FDC is more complex [2].  
FDC control law is developed in two steps.  Firstly feedback linearization principles are 
applied to inner speed control loop, which requires load torque estimate.  Secondly the design 
of the position control loop is also based on FDC and estimated position and speed of load are 
used for control.  Overall control system therefore contains three observers (torque on the 
shaft of motor, load side mechanical variables and load side torque including its derivatives).   

All observers parameter are set up by using Dodd’s settling time formula.  State observer 
was described by (12), (13), (14), and shown in Fig. 3.  The observer offers all state variables 
desired by FDC algorithm.  FDC load position control law requires estimate of load torque 
and its first and second derivative.  These derivatives of load torque are produced in separate 
observer based on Luenberger principles, which is described as: 
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Observer’s state equations rewritten in matrix form including determinant are defined as: 
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Using Dodd’s formula and comparing variables of the same order:  
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results in observer gains: 
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Fig. 5  Load torque observer  

Speed control loop based on FDC requires the estimate of torque on the shaft of motor as 
input.  For this purpose the observer based on motor mechanical equations completed with 
differential equation for shaft torque, which is taken as state-variable, is developed as.    
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In matrix form system equations has form: 
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Same approach described previusly is used to define observer gains:  
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Fig. 6 Motor load torque observer  
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Fig. 7 Position FDC diagram   

Simulation results of load position control based on the principles of FDC are shown in 
Fig. 8 and shows satisfactory elimination of torsional vibrations. 
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Fig. 8  Currents, load and rotor position and difference between them FDC 
 
 

III.  Elimination of vibrations using Sliding Mode Control   
 

SMC is a form of control technique supporting state feedback in which control variable, u 
switches between two limits, ±umax   usually defined by voltage of DC bus.  Switching 
function is defined as (32) where vector y is given as shows (33).  Rewriten linear differential 
equation for switching boundary has form (34) and is decisive for control system behaviour.  
Control variable switches between its to limits as define (35).  For zero initial conditions the 
closed loop transfer function has form as defined (36). 
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More about step by step calculation of switching function can be found in [3]. 
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This is a final form of SMC algorithm, block diagram of which shows Fig. 9.   
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Fig. 9  Block diagram of SMC 

This is basic diagram od SMC for control of load position.  If we can use single rotor 
position sensor observer must by added in to overall control structure.  State space observer 
already presented was added to calculated load angle and load speed.  Further derivation 
required was obtainet by the regular derivation block.  Block diagram of the SMC contreol 
system is shown in Fig.9. 
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Fig. 10  Currents, load and rotor position and difference between them SMC 
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CONCLUSION  
Comparison of simulation results presented confirmed that all three presented methods 

effectively eliminate torsional vibrations and necessary modifications of shaft diameter or its 
material [9] are avoided.   

The most widely used method in practice is elimination of vibrations using PID controllers 
but as it was shown the other methods provide equally good or even better results.  Detailed 
analysis of such controller results in an important observation that the different pole-
assignment patterns is necessary for the different inertia ratios between load and motor [10]. 

FDC method has especially smooth stator current components and provides close tracking 
of prescribed dynamics.  Disadvantage of FDC if compared to IPD is its computational 
complexity due to necessity of load torque derivatives estimation [11].  Taking into account 
that both methods used pole placement method to adjust control gains under the same 
contitions, simulations confirm that FDC eliminates torsion oscillations more effectively. 

SMC is a robust control technique, which exploits switching of control variable between 
its two maximum values [12].  This is the reason why stator current has higher oscillations 
than in previously evaluated methods.  If higher switching frequency of inverter is employed 
or higher quality observation is used the motor current ripples can be substantially reduced, 
which will result in near-equivalelnt control performance.   
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