PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Balance disturbances coefficient as a new value to assess ability to maintain balance on the basis of FFT curves

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to formulate a new balance disturbances coefficient enabling objective balance assessment on the basis of fast Fourier transform curves. The article presents the method of coefficient calculation and possible ways of its interpretation. Methods: 11 healthy participants took part in the experiment. There were four measurements: two in real environment with eyes open and eyes closed as well as two in virtual environment with scenery (surroundings) oscillating with frequency 0.7 Hz and 1.4 Hz. Scenery was displayed by means of the Oculus Rift system, whereas position of centre of pressure was measured with the use of Zebris FDM-S platform. Obtained centre of pressure positions were used to calculate fast Fourier transform, and then balance disturbances coefficient. Results: Comparisons of coefficient values obtained for the whole group and two selected participants were presented in order to explain how to interpret and use the coefficient. For better explanation of coefficient interpretation the most popular time domain stabilometric quantities and fast Fourier transform curves were presented as well. Conclusions: The balance disturbances coefficient makes it possible to quantitatively and objectively determine, on the basis of fast Fourier transform curves, the influence of the oscillating scenery on the tested person as well as show how the overall equilibrium of that person was disturbed.
Rocznik
Strony
143--151
Opis fizyczny
Bibliogr. 25 poz., tab., wykr.
Twórcy
autor
  • Department of Biomechatronics, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • [1] AKIDUKI H., NISHIIKE S., WATANABE H., MATSUOKA K., KUBO T., TAKEDA N., Visual-vestibular conflict induced by virtual reality in humans, Neurosci. Lett., 2003, 340, 197–200.
  • [2] BŁASZCZYK J.W., BECK M., SZCZEPAŃSKA J., SADOWSKA D., BACIK B., JURAS G., SŁOMKA K.J., Directional Measures of Postural Sway as Predictors of Balance Instability and Accidental Falls, J. Hum. Kinet., 2016, 52(1), 75–83.
  • [3] BŁASZCZYK J.W., ORAWIEC R., DUDA-KŁODOWSKA D., OPALA G., Assessment of postural instability in patients with Parkinson’s disease, Exp. Brain Res., 2007, 183, 170–114.
  • [4] CHAUDHRY H., BUKIET B., ZHIMING J., FINDLEY T., Measurement of balance in computer posturography: Comparison of methods – a brief review, J. Bodyw. Mov. Ther., 2011, 15, 82–91.
  • [5] CUNNINGHAM D.W., NUSSECK H.-G., TEUFEL H., WALLRAVEN C., BULTHOFF H.H., A psychophysical examination of swinging rooms, cylindrical virtual reality setups, and characteristic trajectories, Proceedings of the IEEE Virtual Reality Conference (VR’2006), 111–117.
  • [6] CUSIN F.S., GANANÇA M.M., GANANÇA F.F., GANANÇA C.F., CAOVILLA H.H., Balance Rehabilitation Unit (BRU TM) posturography in Menière’s disease, Braz. J. Otorhinolar., 2010, 76(5), 611–617.
  • [7] HUE O., SIMONEAU M., MARCOTTE J., BERRIGAN F., DORE J., MARCEAU P., MARCEAU S., TREMBLAY A., TEASDALE N., Body weight is a strong predictor of postural stability, Gait Posture, 2007, 26, 32–38.
  • [8] JELSMA L.D., SMITS-ENGELSMAN B.C.M., KRIJNEN W.P., GEUZE R.H., Changes in dynamic balance control over time in children with and without Developmental Coordination Disorder, Hum. Movement Sci., 2016, 49, 148–159.
  • [9] JOCHYMCZYK-WOŹNIAK K., NOWAKOWSKA K., MICHNIK R., NAWRAT-SZOŁTYSIK A., GÓRKA W., Assessment of balance of older people living at a social welfare home, Innovation in Biomedical Engineering, Cham: Springer International Publishing, Advances in Intelligent System and Computing, 2018, 623, 217–224.
  • [10] JURKOJĆ J., WODARSKI P., BIENIEK A., GZIK M., MICHNIK R., Influence of changing frequency and various sceneries on stabilometric parameters and on the effect of adaptation in an immersive 3D virtual environment, Acta Bioeng. Biomech., 2017, 19(3), 129–137.
  • [11] JURKOJĆ J., WODARSKI P., MICHNIK R., BIENIEK A., GZIK M., GRANEK A., The Standard Deviation of Differential Index as an innovation diagnostic tool based on kinematic parameters for objective assessment of a upper limb motion pathology, Acta Bioeng. Biomech., 2017, 19(4), 77–87.
  • [12] JURKOJĆ J., WODARSKI P., MICHNIK R., NOWAKOWSKA K., BIENIEK A., GZIK M., The Upper Limb Motion Deviation Index: A new comprehensive index of upper limb motion pathology, Acta Bioeng. Biomech., 2017, 19(2), 175–185.
  • [13] KESHNER E.A., Virtual reality and physical rehabilitation: a new toy or a new research and rehabilitation tool?, J. Neuroeng. Rehabil., 2004, I: 8.
  • [14] KUSZ D., WOJCIECHOWSKI P., CIELIŃSKI L.S., IWANIAK A., JURKOJĆ J., GĄSIOREK D., Stress distribution around a TKR implant: are lab results consistent with observational studies?, Acta Bioeng. Biomech., 2008, 10(4), 21–26.
  • [15] LAMARCHE L., SHAW J.A., GAMMAGE K.L., ADKIN A.L., Manipulating balance perceptions in healthy young adults, Gait Posture, 2009, 29, 383–386.
  • [16] MAKI B.E., A posture control model and balance test for the prediction of relative postural stability, IEEE Trans. Biobed. Eng. 1987.
  • [17] MCANDREW Y.P., DINGWELL J., WILKEN J., Changes in margins of stability during human walking in destabilizing environments, Proceedings of ISB Congress, Brussels, 2011.
  • [18] MICHNIK R., JURKOJĆ J., WODARSKI P., GZIK M., BIENIEK A., The influence of the scenery and the amplitude of visual disturbances in the virtual reality on the maintaining the balance, Arch. Budo., 2014, 10, 133–140.
  • [19] MICHNIK R., JURKOJĆ J., WODARSKI P., GZIK M., JOCHYMCZYK-WOŹNIAK K., BIENIEK A., The influence of frequency of visual disorders on stabilographic parameters, Acta Bioeng. Biomech., 2016, 18(1), 25–33.
  • [20] NOWAKOWSKA K., MICHNIK R., JOCHYMCZYK-WOŹNIAK K., JURKOJĆ J., MANDERA M., KOPYTA I., Application of Gait Index Assessment to Monitor the Treatment Progress in Patients with Cerebral Palsy, Information Technologies in Medicine Cham: Springer International Publishing, Advances in Intelligent System and Computing, 2016, 472, 75–85.
  • [21] SCOPPA F., CAPRA R., GALLAMINI M., SHIFFER R., Clinical stabilometry standardization Basic definitions – Acquisition interval – Sampling frequency, Gait Posture, 2013, 37, 290–292.
  • [22] SCHUTTE L.M., NARAYANAN U., STOUT J.L., SELBER P., GAGE J.R., SCHWARTZ M.H., An index for quantifying deviations from normal gait, Gait Posture, 2000, 11(1), 25–31.
  • [23] SCHWARTZ M., ROZUMALSKI A., The gait deviation index: A new comprehensive index of gait pathology, Gait Posture, 2008, 28(3), 351–357.
  • [24] STREEPEY J.W., KENYON R.V., KESHNER E.A., Field of view and base of support width influence postural responses to visual stimuli during quiet stance, Gait Posture, 2007, 25, 49–55.
  • [25] SYCZEWSKA M., ZIELIŃSKA T., Power spectral density in balance assessment. Description of methodology, Acta Bioeng. Biomech., 2010, 12(4), 89–92.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-275d735c-5463-4493-bf71-d3da36b9d73b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.