PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Identfication Procedure for The Constitutive Model of Elasto-Viscoplasticity Describing the Behaviour of Nanocrystalline Titanium

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main objective of the present paper is the description of the behaviour of the ultrafinegrained (UFG) titanium by the constitutive model of elasto-viscoplasticity with the development of the identification procedure. We intend to utilize the constitutive model of the thermodynamical theory of elasto-viscoplasticity for description of nanocrystalline metals presented by Perzyna [21]. The identification procedure is based on experimental observation data obtained by Jia et al. [11] for ultrafine-grained titanium and by Wang et al. [25] for nanostructured titanium. Hexagonal close-packed (hcp) ultrafine-grained titanium processed by sever plastic deformation (SPD) has gained wide interest due to its excellent mechanical properties and potential applications as biomedical implants.
Rocznik
Strony
221--240
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanics of Materials Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
autor
  • Department of Mechanics of Materials Institute of Fundamental Technological Research Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
Bibliografia
  • 1. Asaro R.J., Krysl P., Kad B., Deformation mechanism transitions in nanoscale fcc metals, Philosophical Magazine Letters, 83, 733–743, 2003.
  • 2. Asaro R.J., Needelman A., Overview no. 42. Texture development and strain hardening in rate dependent polycrystals, Acta Metallurgica, 33, 6, 923–953, 1985.
  • 3. Chen M., Ma E., Henker K., Mechanical behavior of nanocrystalline metals, [in:] Nanomaterials handbook, Y. Gogotsi [Ed.], CRC Press Taylor and Francis Group, pp. 497–529, 2006.
  • 4. Christian J.W., Mahajan S., Deformation twinning, Progress in Material Sci., 39, 1–158, 1995.
  • 5. Dornowski W., Perzyna P., Constitutive modelling of inelastic solids for plastic flow processes under cyclic dynamic loadings, Transaction of the ASME, J. Eng. Materials and Technology, 121, 210–220, 1999.
  • 6. Dornowski W., Perzyna P., Localization phenomena in thermo-viscoplastic flow processes under cyclic dynamic loadings, Computer Assisted Mechanics and Engineering Sciences, 7, 117–160, 2000.
  • 7. Dornowski W., Perzyna P., Numerical analysis of macrocrack propagation along a bimaterial interface under dynamic loading processes, Int. J. Solids and Structures, 39, 4949–4977, 2002.
  • 8. Dornowski W., Perzyna P., Numerical investigation of localized fracture phenomena in inelastic solids, Foundation of Civil and Environmental Engineering, 7, 79–116, 2006.
  • 9. El-Danaf E., Kalidindi S.R., Doherty R.D., Influence of grain size and stacking-fault energy on deformation twinning in fcc metals, Metall and Mater Trans. A, 30, 1223–33, 1999.
  • 10. Gurao N.P., Kapoor R., Suwas S., Deformation behaviour of commercially pure titanium at extreme strain rates, Acta Materialia, 59, 3431–3446, 2011.
  • 11. Jia D., Wang Y.M., Ramesh K.T., Ma E., Zhu Y.T., Valiev R.Z., Deformation behavior and plastic instabilities of ultrafine-grain titanium, Applied Physics Letters, 79, 611–613, 2001.
  • 12. Kumar K.S., Van Swygenhoven H., Suresh S., Mechanical behavior of nanocrystalline metals and alloys, Acta Mater., 51, 5743–5774, 2003.
  • 13. Meyers M.A., Mishra A., Benson D.J., Mechanical properties of nanocrystalline materials, Progress in Materials Science, 51, 427–556, 2006.
  • 14. Nemat-Nasser S., Guo W.G., Cheng J.Y., Mechanical response and deformation mechanisms of a commercially pure titanium, Acta Mater., 47, 3705–3720, 1999.
  • 15. Nowak Z., Perzyna P., The Identification Procedure for the Constitutive Model of Elasto-Viscoplasticity Describing the Behaviour of Nanocrystalline Iron During Quasistatic and Dynamic Loading Processes, [in:] Mathematical Methods in Continuum Mechanics, K. Wilmański, B. Michalak, J. Jędrysiak [Eds.], A series of Monographs, Technical University of Lodz, pp. 63–88, 2011.
  • 16. Perzyna P., Thermodynamic theory of viscoplasticity, Adv. Applied Mechanics, 11, 313– 354, 1971.
  • 17. Perzyna P., Constitutive modelling of dissipative solids for postcritical behaviour and fracture, ASME J. Eng. Materials and Technology, 106, 410–419, 1984.
  • 18. Perzyna P., The thermodynamic theory of elasto-viscoplasticity, Engng. Trans., 53, 3, 235–316, 2005.
  • 19. Perzyna P., The thermodynamical theory of elasto-viscoplasticity, Engineering Transactions, 53, 235–316, 2005.
  • 20. Perzyna P., The thermodynamical theory of elasto-viscoplasticity accounting for microshear banding and induced anisotropy effects, Mechanics, 27, 25–42, 2008.
  • 21. Perzyna P., The thermodynamical theory of elasto-viscoplasticity for description of nanocrystalline metals, Engng. Trans., 58, 1–2, 15–74, 2010.
  • 22. Pęcherski R.B., Macroscopic effects of microshear banding in plasticity of metals, Acta Mechanica, 131, 203–224, 1998.
  • 23. Pęcherski R.B., Continuum mechanics description of plastic flow produced by microshear bands, Technische Mechanic, 18, 107–115, 1998.
  • 24. Salem Ayman A., Kalidindi Surya R., Doherty Roger D., Strain hardening of titanium: role of deformation twinning, Acta Materialia, 51, 4225–4237, 2003.
  • 25. Wang Y.M., Huang J.Y., Jiao T., Zhu Y.T., Hamza A.V., Abnormal strain hardening in nanostructered titanium at high strain rates and large strains, J. Mater. Sci., 42, 1751– 1756, 2007.
  • 26. Wang Y.M., Ma E., Strain hardening, strain sensitivity, and ductility of nanostructured metals, Materials Science and Engineering, A375–377, 46–52, 2004.
  • 27. Wang Y.M., Ma E., Three strategies to achieve uniform tensile deformation in nanostructured metal, Acta Materialia, 52, 1699–1709, 2004.
  • 28. Wang Y.M., Ma E., Valiev R.Z., Zhu Y.T., Tough nanostructured metals at cryogenic temperatures, Adv. Mater., 16, 328–331, 2004.
  • 29. Zhu B., Asaro R., Krysl P., Bailey R., Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals, Acta Mater., 53, 4825– 4838, 2005.
  • 30. Zhu Y.T., Huang J.Y., Ungar T., Wang Y.M., Ma E., Valiev R.Z., Nanostructures in the Ti processed by severe plastic deformation, J. Mater. Res., 18, 1908–1917, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27590e9b-6758-4bd8-8820-adcda4023d08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.