PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Change in flow separation and velocity distribution due to effect of guide vane installed in a 90° pipe bend

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Present paper makes an effort to study the flow separation and velocity distribution for incompressible turbulent flow through 90° pipe bend due to the effect of guide vane installed in the bend portion. It has been observed here how the normalized velocity distribution profile changes if the guide vane is provided. k-ɛ turbulence model has been adopted for simulation purpose. After validating with existing experimental results, a detailed study has been performed for a particular Reynolds number and four different positions of guide vane. The value of Curvature ratio (Rc/D) has been considered as 1 for present study. The results obtained from the present study have been presented in terms of graphical form. A flow separation region was found at bend outlet for flow through 90° pipe bend without guide vane. This secondary flow separation region was absent for the cases which deals with the flow through 90° pipe bend with guide vane. Velocity distribution at seven different downstream positions have been presented in graphical form. Position to get a fully developed velocity distribution profile for each cases has been estimated on the basis of presented results.
Rocznik
Strony
353--361
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
  • Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103,W.B., India
autor
  • Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103,W.B., India
Bibliografia
  • [1] Ono, A., Kimura, N., Kamide, H. and Tobita, A.: Influence of elbow curvature on flow structure at elbow outlet under high Reynolds number condition, Nuclear Engineering and Design, 241, 4409-4419, 2011.
  • [2] Hüttl, T. J. and Friedrich, R.: Direct numerical simulation of turbulent flows in curved and helically coiled pipes, Computers & fluids, 30, 591-605, 2001.
  • [3] Chang, T-H.: An investigation of heat transfer characteristics of swirling flow in a 180° circular section bend with uniform heat flux, KSME international journal, 17, 1520-1532, 2003.
  • [4] Hellström, F.: Numerical computations of the unsteady flow in turbochargers, 2010.
  • [5] Yamano, H., Tanaka, M., Murakami, T., Iwamoto, Y., Yuki, K., Sago, H. and Hayakawa, S.: Unsteady elbow pipe flow to develop a flow-induced vibration evaluation methodology for Japan Sodium-Cooled Fast Reactor, Journal of nuclear science and technology, 48, 677-687, 2011.
  • [6] Enayet, M. M., Gibson, M. M., Taylor, A. M. K. P. and Yianneskis, M.: Laser-Doppler measurements of laminar and turbulent flow in a pipe bend, International Journal of Heat and Fluid Flow, 3, 213-219, 1982.
  • [7] Anwer, M. and So, R. M. C.: Swirling turbulent flow through a curved pipe, Experiments in fluids, 14, 85-96, 1993.
  • [8] Pittard, M. T. and Blotter, J. D.: Numerical modeling of LES based turbulent flow induced vibration, in ASME 2003 International Mechanical Engineering Congress and Exposition, 2003.
  • [9] Qing, M., Jinghui, Z., Yushan, L., Haijun, W. and Quan, D.: Experimental studies of orifice-induced wall pressure fluctuations and pipe vibration, International journal of pressure vessels and piping, 83, 505-511, 2006.
  • [10] Zhang, H., Zhang, X., Sun, H., Chen, M., Lu, X., Wang, Y. and Liu, X.: Pressure of Newtonian fluid flow through curved pipes and elbows, Journal of Thermal Science, 22, 372-376, 2013.
  • [11] Ito, H.: Pressure losses in smooth pipe bends, Journal of Basic Engineering, 82, 131-140, 1960.
  • [12] Imao, S., Itoh, M. and Harada, T.: Turbulent characteristics of the flow in an axially rotating pipe, International Journal of Heat and Fluid Flow, 17, 444-451, 1996.
  • [13] Kim, J., Yadav, M. and Kim, S.: Characteristics of Secondary Flow Induced by 90-Degree Elbow in Turbulent Pipe Flow, Engineering Applications of Computational Fluid Mechanics, 8, 229-239, 2014.
  • [14] Homicz, G. F.: Computational fluid dynamic simulations of pipe elbow flow, —textitUnited States, Department of Energy, 2004.
  • [15] Rahimzadeh, H., Maghsoodi, R., Sarkardeh, H. and Tavakkol, S.: Simulating flow over circular spillways by using different turbulence models, Engineering Applications of Computational Fluid Mechanics, 6,100-109, 2012.
  • [16] Dutta, P.and Nandi, N.: Effect of Reynolds Number and Curvature Ratio on Single Phase Turbulent Flow in Pipe Bends, Mechanics and Mechanical Engineering, 19, 5-16, 2015.
  • [17] Goodarzi, M., Safaei, M. R., Vafai, K., Ahmadi, G., Dahari, M., Kazi, S. N. and Jomhari, N.: Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model, International Journal of Thermal Sciences, 75, 204-220, 2014.
  • [18] Safaei, M. R., Goshayeshi, H. R., Razavi, B. S. and Goodarzi, M.: Numerical investigation of laminar and turbulent mixed convection in a shallow water-filled enclosure by various turbulence methods, Scientific Research and Essays, 6, 4826-4838, 2011.
  • [19] Dutta, P., Saha, S. K., Nandi, N.: Computational study of turbulent flow in pipe bends, International Journal of Applied Engineering Research, 10, 2015.
  • [20] Dutta, P., Saha, S. K., Nandi, N. and Pal, N.: Numerical study on flow separation in 90? pipe bend under high Reynolds number by k-varepsilon modelling, Engineering Science and Technology, an International Journal, 19, 904-910, 2016.
  • [21] Dutta, P. and Nandi, N.: Study on pressure drop characteristics of single phase turbulent flow in pipe bend for high Reynolds number, ARPN J. Eng. Appl. Sci, 10, 2221-2226, 2015.
  • [22] Tu, J., Yeoh, G. H. and Liu, C.: Computational fluid dynamics: a practical approach, Butterworth-Heinemann, 2012.
  • [23] Zhang, T., Zhang, Y. O. and Ouyang, H.: Structural vibration and fluid-borne noise induced by turbulent flow through a 90 piping elbow with/without a guide vane, International Journal of Pressure Vessels and Piping, 125, 66-77, 2015.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27588c9d-29a9-4338-b418-c5823cb226fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.