Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A review of methods for testing the compatibility of high energy mixed components is presented. The advantages, deficiencies as well as the limitations of particular research methods are described based on selected applications reported in the literature. The most frequently used techniques for testing compatibility are thermal methods, such as DSC, TG, VST, and HFC, in which the processes of decomposition of samples conditioned at elevated temperatures are analyzed. Examples of non-thermal methods for testing compatibility, such as DFT, FTIR or XRD are reported in the literature as well. Incompatibility may lead to thermal detonation, which can occur even at low degrees of conversion. For this reason, the authors focused specifically on the limitations of methods for determining compatibility at high degrees of conversion. The methods allowing testing of compatibility based on an analysis for the initial decomposition stage are recommended.
Słowa kluczowe
Rocznik
Tom
Strony
512--528
Opis fizyczny
Bibliogr. 67 poz.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemistry, Department of High Energy Materials, 3 Noakowskiego Street, 00-664 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, Department of High Energy Materials, 3 Noakowskiego Street, 00-664 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, Department of High Energy Materials, 3 Noakowskiego Street, 00-664 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, Department of High Energy Materials, 3 Noakowskiego Street, 00-664 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, Department of High Energy Materials, 3 Noakowskiego Street, 00-664 Warsaw, Poland
autor
- Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, 6 Annopol Street, 03-236 Warsaw, Poland
Bibliografia
- [1] Ravi, P.; Badgujar, D.M.; Gore, G.M.; Tewari, S.P.; Sikder, A.K. Review on Melt Cast Explosives. Propellants Explos. Pyrotech. 2011, 36(5): 393-403.
- [2] Singh, A.; Sharma, T.C.; Singh, V.; Mukherjee, N. Thermal Degradation Behaviour and Kinetics of Aged TNT-based Melt Cast Composition B. Cent. Eur. J. Energ. Mater. 2019, 16(3): 360-379.
- [3] Gong, L.; Zhou, X.; Guo, Y.; Li, Y.; Li, J.; Yang, R. Combustion of Composite Propargyl-Terminated Copolyether Propellant Containing Ammonium Dinitramide. Combust. Sci. Technol. 2020, 192(9): 1707-1718.
- [4] Papliński, A.; Maranda, A. Research on the Detonation Process of Explosives Containing Sodium Azide. Cent. Eur. J. Energ. Mater. 2019, 16(4): 520-532.
- [5] Singh, A.; Singla, P.; Sahoo, S.C.; Soni, P.K. Compatibility and Thermal Decomposition behavior of an Epoxy Resin with Some Energetic Compounds. J. Energ. Mater. 2020, 38(4): 432-444.
- [6] Anniyappan, M.; Vijay Varma, K.; Amit, R.S.; Nair, J. 1-Methyl-2,4,5-trinitroimidazole (MTNI), a Melt-cast Explosive: Synthesis and Studies on Thermal behavior in Presence of Explosive Ingredients. J. Energ. Mater. 2020, 38(1): 111-125.
- [7] Xu, W.Z.; Peng, J.Y.; Wang, J.; Li, H.; Wang, J.Y. Preparation and Characterization of CL-20 based Composites by Compressed Air Spray Evaporation. Cent. Eur. J. Energ. Mater. 2020, 17(1): 66-84.
- [8] Gołofit, T.; Gańczyk-Specjalska, K.; Posala, K. Solid–Liquid Equilibrium and Thermochemical Properties of the TNT-DINA System. Thermochim. Acta 2020, 690: 1-7.
- [9] Dai, X.; He, S.; Huang, X.; Yang, Z.; Wen, Y.; Li, M. Experimental Investigation of the Effect of Polymers and Crystalline Qualities on the Safety Performance of LLM-105-based PBXs under Dynamic Compression and Shear. Cent. Eur. J. Energ. Mater. 2020, 17(2): 201-222.
- [10] Zhang, Y.P.; Hou, C.H.; Jia, X.L.; Tan, Y.X.; Wang, J.Y. Compatibility Study of 1,1-Diamino-2,2-Dinitroethene (FOX-7) with Some Energetic Materials. J. Chem. 2020, 2020: 1-8.
- [11] Singh, A.; Kumar, R.; Soni, P.K.; Singh, V. Compatibility and Thermal Decomposition Kinetics between HMX and Some Polyester-based Polyurethanes. J. Therm. Anal. Calorim. 2021, 143: 3969-3981.
- [12] Komarova, M.; Vakutin, A.; Kazutin, M.; Kozyrev, N.; Sukhanov, G. Meltcast Energetic Matrices with 3-Nitro-1,2,4-triazole Derivatives for Composite Explosives. Cent. Eur. J. Energ. Mater. 2020, 17(3): 344-361.
- [13] Singh, A.; Sharma, T.; Kumar, M. Effect of the Molecular Structure and Molecular Weight of Poly(Vinylidene Fluoride-Chlorotrifluoroethylene) Copolymers on the Characteristic Properties of TATB-based Composites. Cent. Eur. J. Energ. Mater. 2020, 17(3): 428-450.
- [14] Nguyen, T.T.; Phan. D.N.; Do, V.T.; Nguyen, H.N. Kinetic Analysis of the Thermal Decomposition of Polymer-Bonded Explosive Based on PETN: Model-Fitting Method and Isoconversional Method. Adv. Mater. Sci. Eng. 2020, 2020: 1-12.
- [15] Zhao, C.; Chi, Y.; Yu, Q.; Wang, X.; Fan, G.; Yu, K. Comprehensive Study of the Interaction and Mechanism between Bistetrazole Ionic Salt and Ammonium Nitrate Explosive in Thermal Decomposition. J. Phys. Chem. C 2019, 123(45): 27286-27294.
- [16] Yongjin, C.; Shuhong, B. High Energy Density Material (HEDM) – Progress in Research Azine Energetic Compounds. Johnson Matthey Technol. Rev. 2019, 63(1): 51-72.
- [17] Yu, Q.; Zhao, C.; Zhu, Q.; Sui, H.; Yin, Y.; Li, J. Influence of Polydopamine Coating on the Thermal Stability of 2,6-Diamino-3,5-dinitropyrazine-1-oxide Explosive under Different Heating Conditions. Thermochim. Acta 2020, 686: 178530-178538.
- [18] Li, H.; Yang, Y.; Pan, J.; Wang, W.; Pan, R.; Zhu, W. Synthesis, Characterization and Compatibility Studies of poly(DFAMO/NIMMO) with Propellant and PBX Ingredients. Cent. Eur. J. Energ. Mater. 2018, 15(1): 85-99.
- [19] Li, X.; Wang, B.; Lin, Q. Compatibility Study of 2,6-Diamino-3,5-dinitropyridine-1-oxide with Some Energetic Materials. Cent. Eur. J. Energ. Mater. 2016, 13(4): 978-988.
- [20] Hara, M.; Trzciński, W.A.; Cudziło, S.; Szala, M.; Chyłek, Z.; Surma, Z.Thermochemical Properties, Ballistic Parameters and Sensitivity of New RDX-based Propellants. Cent. Eur. J. Energ. Mater. 2020, 17(2): 223-238.
- [21] Jain, S.; Kshirsagar, D.R.; Khire, V.H.; Kandasubramanian, B. Evaluation of Strontium Ferrite (SrFe12O19) in Ammonium Perchlorate-based Composite Propellant Formulations. Cent. Eur. J. Energ. Mater. 2019, 16(1): 3-20.
- [22] Ghosh, K.; Kumar, A.; Banerjee, S.; Patro, U.S.; Gupta, M. Influence of Dispersion Methods on the Mechanical, Thermal and Rheological Properties of HTPB-based Nanocomposites: Possible Binders for Composite Propellants. Cent. Eur. J. Energ. Mater. 2019, 16(2): 281-298.
- [23] Luppi, F.; Mai, N.; Kister, G.; Gill, P.P.; Gaulter, S.E.; Stennett, C.; Dossi, E. Chemical Modification of β‐Cyclodextrins: Balancing Soft and Rigid Domains in Complex Structures. Chem. – A Eur. J. 2019, 25(68): 15646-15655.
- [24] Yao, Y.-Y.; Zhou, X.-L.; Lin, Q.-H.; Lu, M. Compatibility Study of NaN5 with Traditional Energetic Materials and HTPB Propellant Components. J. Energ. Mater. 2020, 38(4): 445-454.
- [25] Vijayalakshmi, R.; Agawane, N.T.; Talawar, M.B.; Khan, M.A.S. Examining the Compatibility of Energetic Plasticizer DNDA-5 with Energetic Binders. J. Macromol. Sci. Part A Pure Appl. Chem. 2020, 57(1): 46-54.
- [26] Dinçer Yilmaz, N.E.; Karakaş, G. Effect of Drying Conditions on the Characteristics and Performance of B/Fe2O3 nano-Composites Prepared by Sol-Gel Method. Cent. Eur. J. Energ. Mater. 2020, 17(1): 85-106.
- [27] Liu, Y.; Hu, L.; Gong, S.; Guang, C.; Li, L.; Hu, S.; Deng, P. Study of Ammonium Perchlorate-based Molecular Perovskite (H2DABCO)[NH4(ClO4)3]/Graphene Energetic Composite with Insensitive Performance. Cent. Eur. J. Energ. Mater. 2020, 17(3): 451-469.
- [28] Zygmunt, A.; Cieślak, K.; Gołofit, T. Magnesium – An Important Component of High-energy Compositions. J. Elem. 2014, 19(2): 617-626.
- [29] Gołofit, T.; Zyśk, K. Thermal Decomposition Properties and Compatibility of CL-20 with Binders HTPB, PBAN, GAP and polyNIMMO. J. Therm. Anal. Calorim. 2015, 119(3): 1931-1939.
- [30] Semenov, N.N. Chemical Kinetics and Chain Reactions. Oxford University Press, London, 1935.
- [31] Xu, M.; Lu, X.; Mo, H.; Liu, N.; Zhang, Q.; Ge, Z. Studies on PBFMO-: B-PNMMO Alternative Block Thermoplastic Elastomers as Potential Binders for Solid Propellants. RSC Adv. 2019, 9(51): 29765-29771.
- [32] Yousef, M.A.; Hudson, M.K.; Berry, B.C. Study on the Compatibility of Azotetrazolate High-energy Materials using DSC. J. Therm. Anal. Calorim. 2018, 133(3): 1481-1490.
- [33] Wang, J.; Chen, S.; Jin, S.; Shu, Q.; Zhang, X.; Shi, R. Thermal behavior, Compatibility Study and Safety Assessment of Diammonium 5,5′-bistetrazole-1,1′-diolate (ABTOX). J. Therm. Anal. Calorim. 2020, 139(3): 1771-1777.
- [34] Li, X.; Qin, Y.Y.; Zhu, L.L.; Wang, B.L. Investigation on Compatibility and Thermal Stability of CL-20 with Several Plasticizers. Int. J. Energ. Mater. Chem. Propuls. 2017, 16(4): 359-366.
- [35] Chen, T.; Gou, B.; Hao, G.; Gao, H.; Xiao, L.; Ke, X.; Guo, S.; Jiang, W. Preparation, Characterization of RDX/GAP Nanocomposites, and Study on the Thermal Decomposition behavior. J. Energ. Mater. 2019, 37(1): 80-89.
- [36] Krabbendam-La Haye, E.L.M.; de Klerk, W.P.C.; Miszczak, M.; Szymanowski, J. Compatibility Testing of Energetic Materials at TNO-PML and MIAT. J. Therm. Anal. Calorim. 2003, 72(3): 931-942.
- [37] Bouma, R.H.B.; Griffiths, T.T.; Tuukkanen, I.M. The Development of a Future Chemical Compatibility Standard for Energetic Materials. Thermochim. Acta 2019, 676: 13-19.
- [38] Dimić, M.; Fidanovski, B.; Jelisavac, L.; Rodić, V. Analysis of the Propellants- Polymers Compatibility by Different Test Methods. Sci. Tech. Rev. 2017, 67(2): 13-19.
- [39] Zou, H.; Chen, S.; Li, X.; Shang, F.; Ma, X.; Zhao, J.; Shu, Q. Thermal behavior and Decomposition Kinetics of CL-20-based Plastic-bonded Explosives. J. Therm. Anal. Calorim. 2017, 128(3): 1867-1873.
- [40] Zhang, X.-X.; He, W.; Chen, S.W.; Lyu, J.-Y.; Guo, Z.; Gozin, M.; Yan, Q.-L. Tuning the Crystal Morphology and Catalytic Behavior of Graphene-templated Energetic bis-Tetrazole Copper Coordination Polymers. Adv. Compos. Hybrid Mater. 2019, 2: 289-300.
- [41] Zhang, G.; Jin, S.; Lijie, L.; Li, Y.; Wang, D.; Li, W.; Zhang, T.; Shu, Q. Thermal Hazard Assessment of 4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazaisowutrzitane (TEX) by Accelerating Rate Calorimeter (ARC). J. Therm. Anal. Calorim. 2016, 126(2): 467-471.
- [42] Li, G.; Jin, B.; Chai, Z.; Ding, L.; Chu, S.; Peng, R. Synthesis and Crystal Characterization of Novel Fulleropyrrolidines and Their Potential Application as Nitrocellulose-based Propellants Stabilizer. Polym. Degrad. Stab. 2020, 172: 109061.
- [43] Straathof, M.H.; Driel, C.A.; Lingen, J.N.J.; Ingenhut, B.L.J.; Cate, A.T.; Maalderink, H.H. Development of Propellant Compositions for Vat Photopolymerization Additive Manufacturing. Propellants Explos. Pyrotech. 2020, 45(1): 36-52.
- [44] Myers, L.C. The Chemical Reactivity Test – A Compatibility Screening Test for Explosives. J. Hazard. Mater. 1980, 4(1): 77-87.
- [45] Prokosch, D.; Garcia, F. Chemical Reactivity Test for Thermal Stability. UCRLJC- 117941, 1994.
- [46] STANAG 4147, Chemical Compatibility of Ammunition Components with Explosives (Non Nuclear Applications). Draft edit, NAVY/ARMY/AIR, 2001.
- [47] Joshi, B.V.; Patil, V.B.; Pokharkar, V.B. Compatibility Studies between Carbamazepine and Tablet Excipients using Thermal and non-Thermal Methods. Drug Dev. Ind. Pharm. 2002, 28(6): 687-694.
- [48] de Barros Lima, Í.P.; Lima, N.G.P.B.; Barros, D.M.C.; Oliveira, T.S.; Mendonça, C.M.S.; Barbosa, E.G.; Raffin, F.N.; de Lima e Moura, T.F.A.; Gomes, A.P.B.; Ferrari, M.; Aragão, C.F.S. Compatibility Study between Hydroquinone and the Excipients used in Semi-Solid Pharmaceutical Forms by Thermal and non-Thermal Techniques. J. Therm. Anal. Calorim. 2015, 120(1): 719-732.
- [49] de Barros Lima, Í.P.; Lima, N.G.P.B.; Barros, D.M.C.; Oliveira, T.S.; Barbosa, E.G.; Gomes, A.P.B.; Ferrari, M.; do Nascimento, T.G.; Aragão, C.F.S. Compatibility Study of Tretinoin with Several Pharmaceutical Excipients by Thermal and non-Thermal Techniques. J. Therm. Anal. Calorim. 2015, 120(1): 733-747.
- [50] Li, X.; han Lin, Q.; hua Peng, J.; liang Wang, B. Compatibility Study between 2,6-Diamino-3,5-dinitropyrazine-1-oxide and Some High Explosives by Thermal and Nonthermal Techniques. J. Therm. Anal. Calorim. 2017, 127(3): 2225-2231.
- [51] Guo, W.; Han, Z.; Lin, Q.; Wang, B. Pre-formulation Compatibility Studies of 5-Amino-1H-tetrazole Nitrate with Several Typical Materials by Thermal and Non-thermal Techniques. J. Energ. Mater. 2018, 15(1): 100-114.
- [52] Li, X.; Lin, Q.-H.; Zhao, X.-Y.; Han, Z.-W.; Wang, B.-L. Compatibility of 2,4,6,8,10,12-Hexanitrohexaazaisowurtzitane with a Selection of Insensitive Explosives. J. Energ. Mater. 2017, 35(2): 188-196.
- [53] Cao, X.; Wei, Z.; Song, J.; Zhang, H.; Qu, Y.; Xie, F. Synthesis and Effects of Two Novel Rare-Earth Energetic Complexes on Thermal Decomposition of Cyclotetramethylene Tetranitramine (HMX). Materials (Basel). 2020, 13(12): 1-13.
- [54] Alice Carvalho Mazzeu, M.; da Costa Mattos, E.; Iha, K. Studies on Compatibility of Energetic Materials by Thermal Methods. J. Aerosp. Technol. Manag. 2010, 2(1): 53-58.
- [55] Bellamy, A.J.; Dearing, S.L. The Incompatibility of RDX and Lead. Propellants Explos. Pyrotech. 2002, 27(6): 352-360.
- [56] de Klerk, W.; van der Meer, N.; Eerligh, R. Microcalorimetric Study Applied to the Comparison of Compatibility Tests (VST and IST) of Polymers and Propellants. Thermochim. Acta 1995, 269-270(C): 231-243.
- [57] Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29(11): 1702-1706.
- [58] Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data. Thermochim. Acta 2011, 520(1-2): 1-19.
- [59] Sorensen, D.N.; Knott, D.L.; Bell, R.F. Two-gram DTA as a Thermal Compatibility Tool. J. Therm. Anal. Calorim. 2008, 91(1): 305-309.
- [60] Bohn, M.A. Kinetic Description of Mass Loss Data for the Assessment of Stability, Compatibility and Aging of Energetic Components and Formulations Exemplified with e-CL20. Propellants Explos. Pyrotech. 2002, 27(3): 125-135.
- [61] Gańczyk, K.; Zygmunt, A.; Gołofit, T. Thermal Properties of TEX Decomposition or Sublimation. J. Therm. Anal. Calorim. 2016, 125(2): 967-975.
- [62] Jizhen, L.; Xuezhong, F.; Xiping, F.; Fengqi, Z.; Rongzu, H. Compatibility Study of 1,3,3-Trinitroazetidine with Some Energetic Components and Inert Materials. J. Therm. Anal. Calorim. 2006, 85(3): 779-784.
- [63] Yan, Q.L.; Xiao-Jiang, L.; La-Ying, Z.; Ji-Zhen, L.; Hong-Li, L.; Zi-Ru, L. Compatibility Study of trans-1,4,5,8-Tetranitro-1,4,5,8-tetraazadecalin (TNAD) with Some Energetic Components and Inert Materials. J. Hazard. Mater. 2008, 160(2-3): 529-534.
- [64] Liao, L.-Q.; Wei, H.-J.; Li, J.-Z.; Fan, X.-Z.; Zheng, Y.; Ji, Y.-P.; Fu, X.-L.; Zhang, Y.-J.; Liu, F.-L, Compatibility of PNIMMO with Some Energetic Materials. J. Therm. Anal. Calorim. 2012, 109(3): 1571-1576.
- [65] Shee, S.K.; Shah, P.N.; Athar, J.; Dey, A.; Soman, R.R.; Sikder, A.K.; Pawar, S.; Banerjee, S. Understanding the Compatibility of the Energetic Binder PolyNIMMO with Energetic Plasticizers: Experimental and DFT Studies. Propellants Explos. Pyrotech. 2017, 42(2): 167-174.
- [66] Abramov, V.G.; Vaganova, N.I. Effect of a Side Reaction with Small Heat Liberation on the Critical Thermal-Explosion Condition of the Main Self-Catalyzed Reaction. Combust. Explos. Shock Waves 1978, 14(5): 660-665.
- [67] Książczak, A.; Maranda, A.; Rosenkiewicz, D. Thermal Analysis of Binary Systems. Explosive-Lead Compound. J. Therm. Anal. Calorim. 2000, 60(1): 97-102.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27562291-aaf4-4f16-a312-1a27b6610e06