PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Its-pro-flow: a new enhanced short-term traffic flow prediction for intelligent transportation systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Short-term traffic flow prediction plays a significant role in various applications of intelligent transportation systems (ITS), such as road traffic control and route guidance. This requires the development of intelligent prediction approaches for accurate and timely traffic flow information. To handle this issue, this paper emphasizes the potential of a new idea to propose a high-quality and intelligent prediction of short-term traffic flow in ITS. The proposed model, referred to as ITS-Pro-Flow, takes the benefits of the well-known Profile-Energy (Pro-Energy) as a landmark solution, relying on past observations and current conditions to forecast future short-term traffic flow volume. ITS-Pro-Flow has an effective prediction mechanism due to its unique enhancements over Pro-Energy. The distinctive feature of ITS-Pro-Flow is that it dynamically adjusts the contributions of past predictions and current observations for a particular prediction, which is equally performed in Pro-Energy. We prove the performance of ITS-Pro-Flow through extensive simulations with 2 datasets, in comparison to Pro-Energy and IPro-Energy. Performance results clearly indicate that ITS-Pro-Flow provides more accurate predictions than other schemes.
Rocznik
Tom
Strony
117--136
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Department of Intelligent Transportation Systems and Technologies, Institute of Science, University of Bandirma Onyedi Eylul, Bandirma, Balikesir
  • Department of Computer Technologies, Gonen Vocational School, University of Bandirma Onyedi Eylul, Bandirma, Balikesir
  • Department of Computer Technologies, Gonen Vocational School, University of Bandirma Onyedi Eylul, Bandirma, Balikesir
Bibliografia
  • 1. Kirimtat A., O. Krejcar, A. Kertesz, M.F. Tasgetiren. 2020. „Future trends and current state of smart city concepts: a survey”. IEEE Access 8: 86448-86467.
  • 2. Ammar G., et al. 2017. „Smart cities: a survey on data management, security, and enabling technologies”. IEEE Communications Surveys & Tutorials 19(4): 2456-2501.
  • 3. Menouar H., et al. 2017. „UAV-Enabled intelligent transportation systems for the smart city: applications and challenges”. IEEE Communications Magazine 55(3): 22-28.
  • 4. Yang B., S. Sun, J. Li, X. Lin, Y. Tian. 2019. „Traffic flow prediction using LSTM with feature enhancement”. Neurocomputing 332: 320-327.
  • 5. Wu Y., H. Tan, L. Qin, B. Ran, Z. Jiang. 2018. „A hybrid deep learning based traffic flow prediction method and its understanding”. Transportation Research Part C 90: 166-180.
  • 6. Ahmed M.S., A.R. Cook. 1979. „Analysis of freeway traffic time-series data by using box-jenkings techniques”. Transportation Research Record 722: 1-9.
  • 7. Zhang Y., Y. Xie. 2007 „Forecasting of short-term freeway volume with v-Support vector machines”. Transportation Research Record: Journal of the Transportation Research Board 2024(1): 92-99.
  • 8. Castro-Neto M., Y.S. Jeong, M.K. Jeong, L.D. Han. 2009. „Online-SVR for short-term traffic flow prediction under typical and a typical traffic conditions”. Expert Systems with Applications 36(3): 6164-6173.
  • 9. Xie Y., Y. Zhang, Z. Ye. 2007. „Short-Term traffic volume forecasting using kalman filter with discrete wavelet decomposition”. Computer-Aided Civil and Infrastructure Engineering 22(5): 326-334.
  • 10. Dogan E. 2020. „Analysis of the relationship between LSTM network traffic flow prediction performance and statistical characteristics of standard and nonstandard data”. Journal of Forecasting 39(8): 1213-1228.
  • 11. Tian Y., K. Zhang, J. Li, X. Lin, B. Yang. 2018. „LSTM-Based traffic flow prediction with missing data”. Neurocomputing 318: 297-3205.
  • 12. Dogan E. 2021 „LSTM training set analysis and clustering model development for short-term traffic flow prediction”. Neural Computing and Applications 33(17): 11175-11188.
  • 13. Polson N.G., V.O. Sokolov. 2017. „Deep learning for short-term traffic flow prediction,” Transportation Research Part C 79: 1-17.
  • 14. Sun B., W. Cheng, P. Goswami, G. Bai. 2017. „Short-Term traffic forecasting using self-adjusting k-nearest neighbours”. IET Intelligent Transport Systems 12(1): 41-48.
  • 15. Lippi M., M. Bertini, P. Frasconi. 2013. „Short-Term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning”. IEEE Transactions on Intelligent Transportation Systems 14(2): 871-882.
  • 16. Jeong Y.S., Y.J. Byon, M.M. Castro-Neto, S.M. Easa. 2013. „Supervised weighting-online learning algorithm for short-term traffic flow prediction”. IEEE Transactions on Intelligent Transportation Systems 14(4): 1700-1707.
  • 17. Zu L., F.R. Yu. 2019. „Big data analytics in intelligent transportation systems: a survey”. IEEE Transactions on Intelligent Transportation Systems 20(1): 383-398.
  • 18. Xu C., Z. Li, W. Wang. 2016. „Short-Term traffic flow prediction using a methodology based on AutoRegressive integrated moving average and genetic programming”. Transport 31(3): 343-358.
  • 19. Shafqat A., Z. Huang, M. Aslam, M.S. Nawaz. 2020. „A nonparametric repetitive sampling DEWMA control chart based on linear prediction”. IEEE Access 8: 74977-74990.
  • 20. Righi R.R., E. Correa, M.M. Gomes, C.A. Costa. 2020. „Enhancing performance of IoT applications with load prediction and cloud elasticity”. Future Generation Computer Systems 109: 689-701.
  • 21. Cammarano A., C. Petrioli, D. Spenza. 2016. „Online energy harvesting prediction in environmentally powered wireless sensor networks”. IEEE Sensors 16(17): 6793-6804.
  • 22. PeMS Data Clearinghouse. Available at: http://pems.dot.ca.gov/?dnode=Clearinghouse.
  • 23. Kansal A., J. Hsu, S. Zahedi, M.B. Srivastava. 2007. „Power management in energy harvesting sensor networks”. ACM Transactions on Embedded Computing Systems 6(4).
  • 24. Piorno J.R., C. Bergonzini, D. Atienza, T.S. Rosing. 2009. „Prediction and management in energy harvested wireless sensor nodes”. In: Proc. IEEE Wireless VITAE: 6-10.
  • 25. Noh D.K., K. Kang. 2011. „Balanced energy allocation scheme for a solar-powered sensor system and its effects on network-wide performance”. Journal of Computer and System Sciences 77(5): 917-932.
  • 26. Qureshi H.K., et al. 2017. „Harvested energy prediction schemes for wireless sensor networks: performance evaluation and enhancements”. Wireless Communications and Mobile Computing. Volume 2017. Article ID 6928325.
  • 27. Kingma D.P., J. Ba. 2014. “Adam: A method for stochastic optimization”. In: International Conference on Learning Representations (ICLR).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-274b1926-c20e-4ce1-b9c3-bbee6bcfcf78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.