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Abstract. Appropriate modeling of unsteady aerodynamic characteristics is required for the study of aircraft dynamics and stability analysis, 
especially at higher angles of attack. The article presents an example of using artificial neural networks to model such characteristics. The 
effectiveness of this approach was demonstrated on the example of a strake-wing micro aerial vehicle. The neural model of unsteady aerody-
namic characteristics was identified from the dynamic test cycles conducted in a water tunnel. The aerodynamic coefficients were modeled as 
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1. INTRODUCTION
Strake-wing micro aerial vehicles (s-wMAV) or micro-aircrafts
are a class of autonomous flying robots. Due to their high sen-
sitivity to atmospheric turbulences, it is necessary to develop
adequate mathematical models covering wide ranges of flight
envelope, including supercritical angles of attack. It is partic-
ularly important to develop accurate models of aerodynamics
covering a very wide range of operating parameters [1–4].

The article presents an example of the use of artificial neural
networks (ANN) to identify the longitudinal aerodynamic char-
acteristics of an s-wMAV. Although this method of identifying
aerodynamic characteristics does not give the possibility of ob-
taining aerodynamic derivatives, it still allows for the identifica-
tion of time courses and hysteresis of aerodynamic coefficients
based on flight tests or dynamic measurements in wind or water
tunnels.

Artificial neural networks (ANN) constitute a formal and ef-
ficient tool for modeling nonlinear unsteady aerodynamics. The
main reason for the successful application of ANN are the uni-
versal approximation properties [5], which allow for the use of
ANN for any aircraft without significant simplification assump-
tions. It was found that an NN is able to recreate in real time
the histories of unsteady aerodynamic loads [6,7], using exper-
imental data to train ANN.

∗∗∗e-mail: krzysztof.sibilski@pw.edu.pl

Manuscript submitted 2021-02-13, revised 2021-05-04, initially
accepted for publication 2021-05-11, published in August 2021.

2. EXPERIMENTS
Artificial neural networks modeling unstationary aerodynamic
characteristics of an s-wMAV have been trained on the basis
of test cycles conducted in a water tunnel designed to measure
aerodynamic loads on ranges of low Reynolds numbers, angles
of attack α , and reduced frequencies f . The reduced frequency
f is defined by the following relationship: f = ωcA/V , where
V is light speed or the water tunnel medium flow velocity in
[m/s]; cA is mean aerodynamic chord [m], and ω is an s-wMAV
maneuver angular velocity or water tunnel model oscillation an-
gular rate in [1/s].

These tests were carried out in the water tunnel model RHRC
2436 of the Low Reynolds Numbers Aerodynamics Labora-
tory at the Faculty of Mechanical and Power Engineering of
the Wroclaw University of Technology (Fig. 1) [8–10]. The
s-wMAV model used for the tests is shown in Fig. 2.

Measurements were carried out under stationary and non-
stationary conditions. Aerodynamic characteristics were de-
termined in a wide range of angles of attack and under re-
duced frequencies of model oscillations in water tunnel mea-
surements of space and slip angles. Due to the position of the
strain gauge rigidly related to the tested model in the incli-
nation plane, the values of the lift force were converted from
the value of the normal force by projecting the force values
onto the plane related to the velocity of the medium flow in
the water tunnel. The values of the moment coefficients were
converted from the reference point of the aerodynamic bal-
ance to the point in MAV model plane of symmetry at 25% of
the mean aerodynamic chord. The tests were carried out with
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a Reynolds number of 28 000 and have been described in detail
in [2, 3].

Fig. 1. RHRC 2436 water tunnel in the Nonstationary Aerodynamics Labora-
tory of the Division of Cryogenic and Aviation Engineering. Overview of the
measuring stand: 1 – model in measurements space; 2 – measurement space;
3 – strain gauge (aerodynamic balance); 4 – support; 5 – roll/yaw settings win-
dow; 6 – panel of amplifiers; 7 – main switch; 8 – LABVIEW computer station;

9 – system of flow visualization

Fig. 2. S-wMAV “Bee” model during tests in a water tunnel

Figures 3 and 4 show the time courses of the coefficients of
the lift force CZ and the pitching moment Cm. During the tests,
the model performed harmonic oscillations in the water tunnel
measuring chamber with the amplitude of the angles of attack
(pitch angle) ∆α = 5◦ around two initial positions angle of at-
tack α0 = 25◦ (Fig. 3) and α0 = 55◦ (Fig. 4). The reduced fre-
quency of the models’ oscillation in the measuring space of the
water tunnel was f = 0.0197.

Dynamic tests were conducted for a numbers of values of
reduced frequency and over a wide range of angles of attack
(see Figs. 5 and 6). The amplitude of changes in the angles of
attack was ∆α = 5◦ at a basic angle of attack α0 = 15◦. Fig-
ure 7 shows the effect of the reduced frequency on maximum
(CZ−max, Cm−max) and minimum (CZ−min, Cm−min) val-
ues of the aerodynamic coefficients in the hysteresis loops.

Fig. 3. Waveform of measured unsteady characteristics CZ , Cm as functions of
time, Re = 28000, α0 = 25◦, ∆α = 5◦, f = 0.0197

Fig. 4. Waveform of measured unsteady characteristics CZ , Cm as functions of
time, Re = 28000, α0 = 55◦, ∆α = 5◦, f = 0.0197

There is an almost linear relationship between the reduced fre-
quency and the parameters of the hysteresis loops, both for the
lift coefficient and the pitching moment coefficient. An increas-
ing of the reduced frequency results in an increase in the dis-
tance between the maximum and minimum values of the coef-
ficients in the hysteresis loops.

Fig. 5. Static characteristic (black line) and hysteresis (colored lines) of CZ(α):
f = 0.0197, Re = 28000

Unsteady aerodynamics determine the boundaries of the
flight envelope of a microdrone. It is also possible to apply an
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(see Figs. 5 and 6). The amplitude of changes in the angles of
attack was ∆α = 5◦ at a basic angle of attack α0 = 15◦. Fig-
ure 7 shows the effect of the reduced frequency on maximum
(CZ−max, Cm−max) and minimum (CZ−min, Cm−min) val-
ues of the aerodynamic coefficients in the hysteresis loops.

Fig. 3. Waveform of measured unsteady characteristics CZ , Cm as functions of
time, Re = 28000, α0 = 25◦, ∆α = 5◦, f = 0.0197

Fig. 4. Waveform of measured unsteady characteristics CZ , Cm as functions of
time, Re = 28000, α0 = 55◦, ∆α = 5◦, f = 0.0197

There is an almost linear relationship between the reduced fre-
quency and the parameters of the hysteresis loops, both for the
lift coefficient and the pitching moment coefficient. An increas-
ing of the reduced frequency results in an increase in the dis-
tance between the maximum and minimum values of the coef-
ficients in the hysteresis loops.

Fig. 5. Static characteristic (black line) and hysteresis (colored lines) of CZ(α):
f = 0.0197, Re = 28000

Unsteady aerodynamics determine the boundaries of the
flight envelope of a microdrone. It is also possible to apply an
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artificial neuron network (ANN) for modelling unsteady aero-
dynamics of an s-wMAV. In the literature, ANN architectures
suitable for modeling of the unsteady aerodynamic characteris-
tics in the extended angle-of-attack range have been discussed.
It can also be noticed that a considerable number of papers con-
tributions discuss the application of ANN in modeling unsteady
aerodynamics of jet fighters or the new generation of passenger
airliners [7, 11–17].

Fig. 6. Static characteristic (black line) and hysteresis (colored lines) of Cm(α):
f = 0.0197, Re = 28000

Fig. 7. Maximum and minimum values of lift and pitching moment coefficients
as functions of reduced frequency f of oscillations; α0 = 15◦, ∆α = 5◦, Re =

28000

The results of the experimental data simulation using the neu-
ral network model are presented below.

3. NEURAL NETWORK
The essence behind the operation of a network is the fact that
individual neurons are interconnected via links, which are the
equivalent of synaptic bonds [18]]. The so-called weights of
the links are modified in a network. Network training is about
changing link weights. Information stored within a network is
of distributed character, i.e. it is almost impossible to determine
which network fragment reflects which of its features. The con-
sequence is a very interesting property of neural networks –
relatively high resistance to damage. Information processing
power within a neural network stems from the fact that individ-
ual neurons can simultaneously process information. Because

neuron outputs within a given layer depend solely on the neuron
outputs of the previous layer, i.e. neurons in each layer are inde-
pendent, it is possible to apply simultaneous signal processing.
Individual network layers can also execute simultaneous calcu-
lations, transferring their results inside the network in cycles.
Therefore, information is processed in a streamline. Response
to an output signal appears at the output after n cycles. How-
ever, because a network simultaneously processes n consecutive
excitations, one per each layer, it is possible to conduct calcu-
lations with a frequency equal to information transfer between
neural network layers.

The model by McCulloch and Pitts, formulated in 1943, was
one of the first neuron models [19, 20]. Neuron was adopted as
a binary unit. The electrical diagram of this model is shown in
Fig. 8.

Fig. 8. Artificial neuron model according to McCulloch and Pitts [19]

Pursuant to the source literature [21], input signals x j ( j =
1,2, . . . ,N) are added with appropriate weights wi j in an adder,
and then compared with the threshold wi0. A neuron output sig-
nal yi is expressed by the following relationship [21]:

yi = f

(
N

∑
i=1

wi jx j(t)+wi0

)
. (1)

The argument of this function is an adder signal:

ui =
N

∑
i=1

wi jx j(t)+wi0 (2)

Function f (u) is called the activation function. In the
McCulloch-Pitts model, this is a step function described by the
following relationship [18–21]:

f (u) =

{
1, u > 0 ,
0, u ≤ 0 .

(3)

Coefficients wi j represent the weights of synaptic connections.
A positive value of these coefficients means an excitation
synapse, negative means an inhibitory one. The McCulloch-
Pitts is a discrete model, where the neuron state at moment
(t +1) is determined based on the state of neuron input signals
at the previous moment t. Adopting a discrete model is justified
by the presence of the phenomenon of refraction only in a real
nerve cell, which causes a neuron to be able to change its state
with a certain limited frequency, and with the presence of dead
zones.
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Functions more useful in terms of modelling artificial neural
networks are sigmoidal functions, since they are continuous,
which facilitates the training process.

A sigmoidal neuron exhibits a structure similar to the
McCulloch-Pitts model. However, it differs in that the activa-
tion function is continuous. This study utilized a bipolar sig-
moidal function [21, 22], which can be expressed as:

f (x) = tanh(βx). (4)

Coefficient β is a parameter selected by the user. Its value im-
pacts the shape of the activation function. Sample waveforms of
the bipolar sigmoidal function relative to variable x for various
parameters β are shown in Fig. 9.

Fig. 9. Sample waveforms of bipolar sigmoidal function [21]

As seen in the image above, at low values of β , the activa-
tion function has a mild waveform, while its steepness increases
with the increasing value of β . The value of this coefficient, for
the purposes of calculations in this elaboration, was adopted at
0.5. The differentiability of the bipolar sigmoidal function is its
key feature. This property can be used for neural network train-
ing by means of applying the gradient method. To put it simply,
it is a steepest descent method [21, 22], according to which the
weights are updated:

w = [wi0, wi1, . . . , wiN ]
T (5)

towards a negative gradient of the shape objective function

E =
1
2
(yi −di)

2 (6)

where:

yi = f

(
N

∑
j=1

wi j · x j

)
(7)

whereby yi is the current output value of the i-th neuron.
In relationship (6), the j gradient component has the form

below:

∇ jE =
∂E

∂wi j
= eix j

d f (ui)

dui
(8)

where: ei = (yi −di) – difference between the neuron signal
output value and the set value.

By adopting the designation:

δi = ei
d f (ui)

dui
(9)

we can determine the j gradient component in the form of

∇ jE = δix j . (10)

Weights can be updated discretely, in accordance with:

wi j(t +1) = wi j(t)−ηδix j (11)

where η is the training coefficient, usually taken from a range
of (0,1) or continuously, by solving a differential equation:

dwi j

dt
=−ηδix j . (12)

The gradient method allows for the determination of only the
local minimum, which can be different from a global minimum.

A certain general aid is the application of training with a so-
called momentum [22]. In this method, the weight update pro-
cess takes into account not only information on the function
gradient, but also the current weight change trend. Mathemati-
cally, this method can be represented in the following form:

∆wi j(t +1) =−ηδix j +α∆wi j(t) (13)

where: a is the momentum coefficient usually adopted from the
range of (0,1).

The first term of formula (13) corresponds to the steepest
descent method, while the second component (momentum) in-
cludes only the last weight change, regardless of the current
gradient value. Based on the analyses of the source literature
data [23–25], and the ones discussed in this article, it can
be concluded that the value of this coefficient, including the
component resulting from the momentum, has a greater influ-
ence on weight selection. Its impact increases significantly near
a local minimum, where the gradient value is close to zero.
Therefore, in this case, weight changes are possible, which
leads to increasing objective function value (6), hence, over-
coming the barrier restricting the local minimum. It should be
stressed that the momentum factor cannot fully dominate the
training process, since this would lead to training process insta-
bility. Usually the ei error value is regulated within the train-
ing process, allowing for its growth only to a certain extent,
e.g. by 10%. In such a case, if ei(t +1) < 1.1ei(t), the training
step is accepted and the weight values are updated, whereas if
ei(t +1)≥ 1.1ei(t), the changes are ignored. It is then assumed
that ∆wi j(t) = 0 and the gradient component regains dominance
over the momentum component.

4. NEURAL NETWORK TRAINING METHODS
Each neural network must be subjected to a training process
[26–29]. As a result of the training process, a network acquires
the ability to independently select the values of weight factors.
This ability enables neural networks to independently adapt to
changing operating conditions. The objective of neural network
training is the appropriate weight selection. Distinguished neu-
ral network training methods include training under supervi-
sion, training with a critic and self-organizing training.

In the first method, input signals are accompanied by desired
values of input signals. The values of weight factors are se-
lected so as to minimize network error, that is, the difference
between the value selected by the network and the set output
signal values. In subsequent training cycles, the network selects
the weight so that its responses are as consistent with the train-
ing patterns as possible. A significant feature of this process
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is the presence of feedback, which allows for network weight
correlation.

The method of training with a critic differs from the previ-
ous method in that it does not contain information on required
output values, but instead information on whether the results
obtained by the network are satisfactory or not. If an operation
provides a positive result, the tendency of a system to properly
behave in the future, and vice versa, strengthens.

The self-organizing training method involves rivalry be-
tween individual neurons for active participation in the training
method. Only one neuron can be active in the course of training.
Other neurons remain at rest. A group of competing neurons re-
ceives the same input signal vectors. Depending on the values
of synaptic weights of individual neurons, their output signals
differ. The neuron with the highest output value is the winner. It
adopts a value of 1 at its output, with the other neurons adopting
the value of 0. The winning neuron gains the right to update its
weights, namely, the right to continue training.

The general form of the adopted model is shown in Fig. 10.
A neural network is a mathematical model, which enables de-
termining the output values nst (coefficients of aerodynamic
forces and moments) based on set input signal values of con-
ducted experiments pst .

Fig. 10. Diagram of a mathematical model using neural networks, where [40]:
ps – input signal vector; p′st is the standardized input signal vector; n′st is the
standardized output signal vector; nst is the output signal vector, NN is the

neural network and A and B are signal transformation matrices

Input signals are the measured values of angular positions of
the studied model in the Reynolds number function, reduced
motion frequencies of the model and relative propeller advance
at set values of the angular position in relation to other refer-
ence planes. Measured values of the aerodynamic coefficients
specific for a given motion plane are used as training values.

In the general case, output parameters are an input parame-
ter function. A one-way, multi-layered perceptron network with
sigmoidal neurons was used to determine a mathematical model
of the initial parameter and aerodynamic coefficient vector [22].
The structure of the utilized network is shown in Fig. 11.

The method with a trainer, utilizing experimental results, was
applied for network training. It involved applying the percep-
tron rule [19, 27–33], according to which the weights are se-
lected within a cycle using the momentum error back propaga-
tion algorithm [27,28], which determines the strategy of weight
selection in a multi-layered network, using gradient optimiza-
tion methods. According to this method, network training con-
sists of several stages. The first stage involves the presentation
of a training sample x and calculating the values of signals for
individual neurons within the network. The values of the hidden
layer neuron output signals, followed by the yi values, corre-
sponding to the output layer neurons, are calculated for a given
vector x. The second stage involves minimizing the function
objective. Under the assumption of the continuity of this func-
tion, the gradient optimization methods remain the most effec-

Fig. 11. Neural network structure

tive training methods [21]. According to this general pattern,
three stages are distinguished within each training cycle. The
first one is the analysis of a neural network with typical signal
flow direction, under the assumption of network input signals
equal to the elements of the current vector x. The analysis out-
come are the values of output signals for the neurons of hidden
layers and the output layer, as well as appropriate derivatives
of the activation function in individual layers. The second one
involves creating a back-propagation network by reversing the
signal flow direction, replacing the activation function by their
derivatives, as well as applying an input network at the former
output (currently input), in the form of an appropriate difference
between the current and set values. The values of appropriate
back differences shall be calculated for such a network. The
third stage includes weight adaptation based on the results of
the two previous stages. This process should be repeated for all
training patterns, until the gradient standard falls below a cer-
tain value, which determines the training process accuracy.

For the analysis of the mathematical model, a unidirectional
multilayer perceptron network with sigmoid neurons was used.
The neural network undergoes a learning process. The purpose
of learning is to select the weights of the neural network in such
a way that it simultaneously generates all the parameters nec-
essary to implement the model with an acceptable error level.
The selection of synaptic weights takes place in a cycle that
uses the algorithm of the instantaneous error back propaga-
tion method, which defines the strategy of selecting weights in
a multilayer network using gradient optimization methods. The
authors’ computer program SSN JETNETT 2.0 was used for
teaching neural networks. The designed neural network, after
having learned, should be tested in order to assess the accuracy
of mapping the real object by the neural network. The deter-
mination of its use for simulation studies is based on the test
results [30].

Below you can find the neural network training results for
various network structures (number of layers, number of neu-
rons in the layers, input and output parameter structures). Ex-
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output (currently input), in the form of an appropriate difference
between the current and set values. The values of appropriate
back differences shall be calculated for such a network. The
third stage includes weight adaptation based on the results of
the two previous stages. This process should be repeated for all
training patterns, until the gradient standard falls below a cer-
tain value, which determines the training process accuracy.

For the analysis of the mathematical model, a unidirectional
multilayer perceptron network with sigmoid neurons was used.
The neural network undergoes a learning process. The purpose
of learning is to select the weights of the neural network in such
a way that it simultaneously generates all the parameters nec-
essary to implement the model with an acceptable error level.
The selection of synaptic weights takes place in a cycle that
uses the algorithm of the instantaneous error back propaga-
tion method, which defines the strategy of selecting weights in
a multilayer network using gradient optimization methods. The
authors’ computer program SSN JETNETT 2.0 was used for
teaching neural networks. The designed neural network, after
having learned, should be tested in order to assess the accuracy
of mapping the real object by the neural network. The deter-
mination of its use for simulation studies is based on the test
results [30].

Below you can find the neural network training results for
various network structures (number of layers, number of neu-
rons in the layers, input and output parameter structures). Ex-

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137508 5



6

D. Rykaczewski, M. Nowakowski, K. Sibilski, W. Wróblewski, and M. Garbowski

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137508

D. Rykaczewski, M. Nowakowski, K. Sibilski, W. Wróblewski, and M. Garbowski

perimental data were used for neural network training in order
to generate aerodynamic parameters CZ and Cm. Data in stan-
dardized form for neural network training were developed. The
applied models were characterized by diverse structures.

Exceeding this parameter resulted in further continuation of
the neural network training process and, in consequence, led to
a proper selection of synaptic weights (wi). For instance, in the
case of a global test result for a test number of events lpst =
1000, the obtained average value χ2

avr was equal to 0.72360E-
03, for a tolerance level equal to 0.01. This means that a neural
network is a “fast learner”. The results of aerodynamic charac-
teristics within the s-wMAV pitch plane, for a Reynolds number
of 28 000, identified with neural networks, are shown in Figs. 12
and 13, which present the waveforms for coefficients CZ and
Cm in the function of angle α , for measurements conducted
with deactivated propulsion, and the neural network structure
in the form of 4 × 8 × 8 × 2 – four input layer neurons, two
eight-neuron hidden layers and a two-neuron output layer. Fig-
ures 14 and 15 show waveforms for a neural network with a
3× 9× 9× 2 structure – three input layer neurons, two nine-
neuron hidden layers and a two-neuron output layer; whereas
Figs. 16 and 17 show the waveforms for a neural network with
a 3×10×9×2 structure – three input layer neurons, two ten-
neuron hidden layers and two output layer neurons.

Fig. 12. Waveforms of measured and identified aerodynamic coefficients CZ =
f (α); Cm = f (α), f = 0.0054; Re = 28000; for CZ χ2

avr = 0.000298, and for
Cm χ2

avr = 2.88E−06

Fig. 13. Waveforms of measured and identified aerodynamic coefficients CZ =
f (α); Cm = f (α), f = 0.0296, Re = 28000; for CZ χ2

avr = 0.001504, and for
Cm χ2

avr = 2.42E−05

Fig. 14. Waveforms of measured and identified aerodynamic coefficients CZ =
f (α); Cm = f (α), f = 0.0148, Re = 28000; for CZ χ2

avr = 0.000124, and for
Cm χ2

avr = 5.83E−06

Fig. 15. Waveforms of measured and identified aerodynamic coefficients CZ =
f (α); Cm = f (α), f = 0.0197, Re = 28000; for CZ χ2

avr = 0.000272, and for
Cm χ2

avr = 1.07E−05

Fig. 16. Waveforms of measured and identified aerodynamic coefficients CZ =
f (α); Cm = f (α), f = 0.0148, Re = 28000; for CZ χ2

avr = 0.001112, and for
Cm χ2

avr = 5.86E−5

The selection of neural training coefficients, training con-
stant η and the momentum parameter played an important role
in the training process. They impact the training process speed
and the increment of weight value changes in the course of the
neural training process. A too low momentum parameter value
significantly slows down the training process, however it en-
ables avoiding the so-called generalization error and reaching
a global minimum of the objective function. Whereas too high
values of these parameters, i.e. those close to 1, significantly
impact the value of the error determined with equation (14)
and the obtained output parameter values exceed the assumed
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Fig. 17. Waveforms of measured and identified aerodynamic coefficients CZ =
f (α); Cm = f (α), f = 0.0197, Re = 28000; for CZ χ2

avr = 0.000272, and for
Cm χ2

avr = 1.70E−5

permissible error level. One of the fundamental properties of
neural networks is the ability to generalize the knowledge ac-
quired.

A network trained on a training data set generates expected
results when its input is subjected to a set of data belonging
to this group, yet not participating in the training process. Se-
lecting synaptic weights of a network within a training process
is aimed at shaping its properties, so that it reproduces the se-
quence of set training pairs as best as possible. A neural net-
work should acquire the ability to generalize, so that based on
weight coefficients generated within the training process, it is
able to generate output data for input parameters different from
the ones used in the training process, thus obtaining the abil-
ity to generalize, apart from reproductive capabilities. In order
for a neural network to acquire good generalization capabili-
ties, it must be trained on a redundant set, because only then
can the weights adapt not to individual data, but to their statis-
tical representation. Hence, one should act with the aim to min-
imize a network’s structure, as well as operate on a sufficiently
large set of training data, in order to obtain good network gen-
eralization. The ultimate decision in terms of selecting the final
network form can be made only following full training of nu-
merous structures.

5. CONCLUSIONS
Identification with the use of neural networks allows for map-
ping measurement results with an accuracy in the order of
1%. As a result, a correctly trained neural network can be
used to obtain characteristics for other (as compared with the
ones obtained based on aerodynamic tunnel tests) reduced
model motion frequencies, reduced propeller frequency, differ-
ent Reynolds number or a wide range of angles of attack. How-
ever, please note that a short-term oscillatory motion performed
by an s-wMAV model during experimental tests does not di-
rectly reflect any actual maneuver but only the flow specificity
during a dynamic motion, within a selected range of angular po-
sitions and for specified similarity numbers [2,3,6,14,15]. The
objective of the experiments was to acquire data for the iden-
tification of s-wMAV aerodynamic loads, and in this regard,

the very use of a mathematical relationship for describing thus
measured discredited values, with an accuracy of 10%, can be
considered sufficient.

Based on the analysis of the water tunnel test results, it can
be concluded that reliable aerodynamic characteristics of the
micro-aircraft were obtained both in stationary as well as non-
stationary conditions. The research also involved the determina-
tion of aerodynamic characteristics for a wide range of angular
positions of the studied s-wMAV model [2, 3]. In the case of
dynamic tests, reduced frequency of the short-term oscillatory
motion is the similarity criterion most important from the per-
spective of mapping aircraft motion in under disturbed atmo-
sphere. It seems that this parameter is more paramount than the
Reynolds number, since it relates directly to the non-stationarity
of the flow caused by the motion performed by an actual ob-
ject when flying in a turbulent atmosphere. The range of re-
duced frequencies for the Reynolds numbers assumed was se-
lected based on the analysis of the “Bee” s-wMAV in-flight tests
records [1, 3]. During the non-stationary water tunnel tests, the
range of angular velocities of the model’s motion, after convert-
ing relative to the flight conditions of the “Bee” micro-aircraft
in the atmosphere, was from 0.5 [1/s] to 2 [1/s] [2, 3]. The tests
also involved a broad range of angles of attack, going far be-
yond the critical parameters. The influence of a rotating pro-
peller in a leading-edge extension on the aerodynamic charac-
teristics of an s-wMAV was also studied, taking into account
the similarity criterion – advance ratio and the Strouhal number.
A positive impact of the slipstream on wing flow, especially for
flow at a lower Reynolds number, was demonstrated [2, 3].

Micro aerial vehicles are a relatively new class of unmanned
aerial vehicles. The experimental tests of objects in this class
are currently conducted at many research centers [34–39]. The
aerodynamic characteristics of micro-aircraft are obtained by
way of CFD simulation [1, 38–40], wind or water tunnels test-
ing [1–3,12,16,17,34–38], or by way of in-flight tests [41,42].
Most publications concern the issue of measuring stationary
characteristics, usually within a single plane of micro-aircraft
motion, with the objective of such tests being the determina-
tion of basic aerodynamic characteristics. The issue of fixed-
wing micro-aircraft flight dynamics is approached relatively
rarely, and even in this case, the dynamic properties are usu-
ally studied relative to a single motion plane, most often the
pitch plane [36]. Global source literature rarely addresses the
modelling of s-wMAV characteristics using the artificial neural
networks approach in the range of low Reynolds numbers.
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Fig. 17. Waveforms of measured and identified aerodynamic coefficients CZ =
f (α); Cm = f (α), f = 0.0197, Re = 28000; for CZ χ2

avr = 0.000272, and for
Cm χ2

avr = 1.70E−5

permissible error level. One of the fundamental properties of
neural networks is the ability to generalize the knowledge ac-
quired.

A network trained on a training data set generates expected
results when its input is subjected to a set of data belonging
to this group, yet not participating in the training process. Se-
lecting synaptic weights of a network within a training process
is aimed at shaping its properties, so that it reproduces the se-
quence of set training pairs as best as possible. A neural net-
work should acquire the ability to generalize, so that based on
weight coefficients generated within the training process, it is
able to generate output data for input parameters different from
the ones used in the training process, thus obtaining the abil-
ity to generalize, apart from reproductive capabilities. In order
for a neural network to acquire good generalization capabili-
ties, it must be trained on a redundant set, because only then
can the weights adapt not to individual data, but to their statis-
tical representation. Hence, one should act with the aim to min-
imize a network’s structure, as well as operate on a sufficiently
large set of training data, in order to obtain good network gen-
eralization. The ultimate decision in terms of selecting the final
network form can be made only following full training of nu-
merous structures.

5. CONCLUSIONS
Identification with the use of neural networks allows for map-
ping measurement results with an accuracy in the order of
1%. As a result, a correctly trained neural network can be
used to obtain characteristics for other (as compared with the
ones obtained based on aerodynamic tunnel tests) reduced
model motion frequencies, reduced propeller frequency, differ-
ent Reynolds number or a wide range of angles of attack. How-
ever, please note that a short-term oscillatory motion performed
by an s-wMAV model during experimental tests does not di-
rectly reflect any actual maneuver but only the flow specificity
during a dynamic motion, within a selected range of angular po-
sitions and for specified similarity numbers [2,3,6,14,15]. The
objective of the experiments was to acquire data for the iden-
tification of s-wMAV aerodynamic loads, and in this regard,

the very use of a mathematical relationship for describing thus
measured discredited values, with an accuracy of 10%, can be
considered sufficient.

Based on the analysis of the water tunnel test results, it can
be concluded that reliable aerodynamic characteristics of the
micro-aircraft were obtained both in stationary as well as non-
stationary conditions. The research also involved the determina-
tion of aerodynamic characteristics for a wide range of angular
positions of the studied s-wMAV model [2, 3]. In the case of
dynamic tests, reduced frequency of the short-term oscillatory
motion is the similarity criterion most important from the per-
spective of mapping aircraft motion in under disturbed atmo-
sphere. It seems that this parameter is more paramount than the
Reynolds number, since it relates directly to the non-stationarity
of the flow caused by the motion performed by an actual ob-
ject when flying in a turbulent atmosphere. The range of re-
duced frequencies for the Reynolds numbers assumed was se-
lected based on the analysis of the “Bee” s-wMAV in-flight tests
records [1, 3]. During the non-stationary water tunnel tests, the
range of angular velocities of the model’s motion, after convert-
ing relative to the flight conditions of the “Bee” micro-aircraft
in the atmosphere, was from 0.5 [1/s] to 2 [1/s] [2, 3]. The tests
also involved a broad range of angles of attack, going far be-
yond the critical parameters. The influence of a rotating pro-
peller in a leading-edge extension on the aerodynamic charac-
teristics of an s-wMAV was also studied, taking into account
the similarity criterion – advance ratio and the Strouhal number.
A positive impact of the slipstream on wing flow, especially for
flow at a lower Reynolds number, was demonstrated [2, 3].

Micro aerial vehicles are a relatively new class of unmanned
aerial vehicles. The experimental tests of objects in this class
are currently conducted at many research centers [34–39]. The
aerodynamic characteristics of micro-aircraft are obtained by
way of CFD simulation [1, 38–40], wind or water tunnels test-
ing [1–3,12,16,17,34–38], or by way of in-flight tests [41,42].
Most publications concern the issue of measuring stationary
characteristics, usually within a single plane of micro-aircraft
motion, with the objective of such tests being the determina-
tion of basic aerodynamic characteristics. The issue of fixed-
wing micro-aircraft flight dynamics is approached relatively
rarely, and even in this case, the dynamic properties are usu-
ally studied relative to a single motion plane, most often the
pitch plane [36]. Global source literature rarely addresses the
modelling of s-wMAV characteristics using the artificial neural
networks approach in the range of low Reynolds numbers.
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permissible error level. One of the fundamental properties 
of neural networks is the ability to generalize the knowledge 
acquired.

A network trained on a training data set generates expected 
results when its input is subjected to a set of data belonging 
to this group, yet not participating in the training process. 
Selecting synaptic weights of a network within a training pro-
cess is aimed at shaping its properties, so that it reproduces 
the sequence of set training pairs as best as possible. A neural 
network should acquire the ability to generalize, so that based 
on weight coefficients generated within the training process, 
it is able to generate output data for input parameters differ-
ent from the ones used in the training process, thus obtaining 
the ability to generalize, apart from reproductive capabilities. 
In order for a neural network to acquire good generalization 
capabilities, it must be trained on a redundant set, because only 
then can the weights adapt not to individual data, but to their 
statistical representation. Hence, one should act with the aim 
to minimize a network’s structure, as well as operate on a suf-
ficiently large set of training data, in order to obtain good net-
work generalization. The ultimate decision in terms of selecting 
the final network form can be made only following full training 
of numerous structures.

5. CONCLUSIONS
Identification with the use of neural networks allows for map-
ping measurement results with an accuracy in the order of 1%. 
As a result, a correctly trained neural network can be used to 
obtain characteristics for other (as compared with the ones 
obtained based on aerodynamic tunnel tests) reduced model 
motion frequencies, reduced propeller frequency, different 
Reynolds number or a wide range of angles of attack. However, 
please note that a short-term oscillatory motion performed by 
an s-wMAV model during experimental tests does not directly 
reflect any actual maneuver but only the flow specificity during 
a dynamic motion, within a selected range of angular positions 
and for specified similarity numbers [2, 3, 6, 15, 16]. The objec-
tive of the experiments was to acquire data for the identification 
of s-wMAV aerodynamic loads, and in this regard, the very use 

of a mathematical relationship for describing thus measured 
discredited values, with an accuracy of 10%, can be considered 
sufficient.

Based on the analysis of the water tunnel test results, it 
can be concluded that reliable aerodynamic characteristics of 
the micro-aircraft were obtained both in stationary as well 
as nonstationary conditions. The research also involved the 
determination of aerodynamic characteristics for a wide range 
of angular positions of the studied s-wMAV model [2, 3]. In 
the case of dynamic tests, reduced frequency of the short-term 
oscillatory motion is the similarity criterion most important 
from the perspective of mapping aircraft motion in under dis-
turbed atmosphere. It seems that this parameter is more para-
mount than the Reynolds number, since it relates directly to the 
non-stationarity of the f low caused by the motion performed 
by an actual object when f lying in a turbulent atmosphere. 
The range of reduced frequencies for the Reynolds numbers 
assumed was selected based on the analysis of the “Bee” 
s-wMAV in-f light tests records [1, 3]. During the non-station-
ary water tunnel tests, the range of angular velocities of the 
model’s motion, after converting relative to the f light condi-
tions of the “Bee” micro-aircraft in the atmosphere, was from 
0.5 [1/s] to 2 [1/s] [2, 3]. The tests also involved a broad range of 
angles of attack, going far beyond the critical parameters. The 
inf luence of a rotating propeller in a leading-edge extension 
on the aerodynamic characteristics of an s-wMAV was also 
studied, taking into account the similarity criterion – advance 
ratio and the Strouhal number. A positive impact of the slip-
stream on wing f low, especially for f low at a lower Reynolds 
number, was demonstrated [2, 3].

Micro aerial vehicles are a relatively new class of un-
manned aerial vehicles. The experimental tests of objects in 
this class are currently conducted at many research centers 
[35–40]. The aerodynamic characteristics of micro-aircraft 
are obtained by way of CFD simulation [1, 39–41], wind or 
water tunnels testing [1–3, 13, 17, 18, 35–39], or by way of 
in-flight tests [42, 43]. Most publications concern the issue of 
measuring stationary characteristics, usually within a single 
plane of micro-aircraft motion, with the objective of such 
tests being the determination of basic aerodynamic charac-
teristics. The issue of fixed-wing micro-aircraft flight dy-
namics is approached relatively rarely, and even in this case, 
the dynamic properties are usually studied relative to a single 
motion plane, most often the pitch plane [44]. Global source 
literature rarely addresses the modelling of s-wMAV charac-
teristics using the artificial neural networks approach in the 
range of low Reynolds numbers.
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