
TASK QUARTERLY vol. 22, No 3, 2018, pp. 179–193

HYBRID MPI/OPEN-MP ACCELERATION
APPROACH FOR HIGH-ORDER SCHEMES

FOR CFD
MICHAL SACZEK, KAROL WAWRZAK,

ARTUR TYLISZCZAK AND ANDRZEJ BOGUSLAWSKI
Czestochowa University of Technology

Faculty of Mechanical Engineering and Computer Science
Armii Krajowej 21, 42-201 Czestochowa, Poland

(received: 19 April 2018; revised: 21 May 2018;
accepted: 26 June 2018; published online: 13 July 2018)

Abstract: The paper presents a hybrid MPI +OpenMP (Message Passing Interface/Open
Multi-Processor) algorithm used for parallel programs based on the high-order compact method.
The main tools used to implement parallelism in computations are OpenMP and MPI which
differ in terms of memory on which they are based. OpenMP works on shared-memory and
the MPI on distributed-memory whereas the hybrid model is based on a combination of
those methods. The tests performed and described in this paper present significant advantages
provided by a combination of the MPI/OpenMP approach. The test computations needed for
verifying possibilities of MPI, Open-MP and Hybrid of both tools were carried out using an
academic high-order SAILOR solver. The obtained results seem to be very promising to accelerate
simulations of fluid flows as well as for application using high order methods.
Keywords: MPI, OpenMP, hybrid MPI/OpenMP, high-order methods
DOI: https://doi.org/10.17466/tq2018/22.3/e

1. Introduction
For ages researchers have struggled to understand precisely the complex

structure of fluid flows. Impressive improvements and achievements in computer
technology and the increasingly common use of numerical simulations have
enabled more elaborate experiments thanks to which one can observe constant
progress in the field of Computational Fluid Dynamics (CFD). The issue that
has received much attention in the CFD community are high-order discretization
methods that are irreplaceable in DNS (Direct Numerical Simulation) and LES
(Large Eddy Simulation) studies focused on very deep and detailed analysis of the
fluid flow problems. High-order methods are expected to open the door to a high

180 M. Saczek, K. Wawrzak, A. Tyliszczak and A. Boguslawski

solution accuracy at a lower cost, their present status and ways of application
are described in the review paper [1]. In terms of the highest accuracy there are
spectral and pseudo-spectral methods that are considered to be superior to other
high-order discretization methods, however, they can be used mainly in simple
computational domains.

One of the most attractive high-order methods is the compact difference me-
thod [2], which combines global approximation (spectral method) and flexibility
of the computational domain (finite volume method). However, in this method the
approximations of derivatives are obtained by solving a linear system of equations
(tridiagonal or pentadiagonal) that creates huge difficulties in parallelization as
it makes it necessary to execute the algorithm step by step in a serial fashion.
Special methods have to be applied to divide a linear system of equations into in-
dependent computational groups. There are many techniques, such as the cyclic
reduction method [3], the partitioning methods [4–7] and various implementa-
tions of the Gauss elimination method [8–10], which allow the linear system to
be solved in a parallel way.

As shown in the exhaustive review paper [11] the dominant programming
tools which are used to implement parallelism in CFD codes are OpenMP, MPI,
hybrid OpenMP+ MPI and CUDA. The first three approaches are discussed in
the paper. The main difference between OpenMP and MPI relies on access
to memory i.e., OpenMP works on shared-memory [12] whereas the MPI is
based on distributed-memory that means that the exchange of data requires
communications between nodes [13]. Hybrid programming is based on the idea
of using OpenMP threads to employ multiple cores in a certain socket/node and
MPI to communicate among the sockets/nodes. Possible variants of OpenMP and
MPI methods and their combination are presented in Figure 1. All of the tools

(a) (b)

Figure 1. SMP (Symmetric multiprocessing) cluster: (a) – typical multi-socket
multi-core cluster, (b) – mapped MPI processes to each core [14]

Hybrid MPI/Open-MP Acceleration Approach for High-Order Schemes for CFD 181

mentioned above have been widely used in many research studies in the CFD
investigation: pure OpenMP [15, 16], pure MPI [17, 18], as well as the hybrid
approach MPI +OpenMP [19, 20].

The modern multi-socket multi-core SMP cluster, shown in Figure 1 (a),
allows a program to be run on various configurations [14]. Initial research, which
is not presented in the paper, proved that the best configuration for a hybrid
approach was to assign MPI to each socket and then to use every core available
on that socket as OpenMP threads, as shown in Figure 2 (b). Another option is
presented in Figure 2 (a), where every MPI process is assigned to nodes and then
every core available on that node works as threads.

(a) (b)

Figure 2. SMP cluster: (a) – mapped MPI to each node and OpenMP threads
to each core on that node, (b) – mapped MPI processes to each socket and OMP threads

to each core on that socket [14]

The last option is shown in Figure 1 (b) where the MPI process is assigned
to every core available in the cluster, then threads can be pinned to the same
core. This method is especially useful for pure MPI programs.

The aim of this work is to present a hybrid MPI +OpenMP parallelized
algorithm for a high-order compact method in three spatial dimensions. The test
program created for this research is included in the SAILOR solver used in various
LES studies including free jet flows [21], multi-phase flows [22] and flames [23].

2. Numerical algorithm

The SAILOR code is based on a projection method for the pressure-velocity
coupling. The time integration is performed by a predictor-corrector (Adams-Ba-
shforth/Adams-Moulton) approach and the spatial discretization is based on the
6th order compact difference method for half-staggered meshes. The detailed de-
scription of the SAILOR code is presented in [24].

182 M. Saczek, K. Wawrzak, A. Tyliszczak and A. Boguslawski

2.1. Compact Difference Scheme
The compact difference scheme allows calculating the derivatives of a ge-

neral function 𝑓 at the mesh node using the values of 𝑓 and its derivative at the
neighboring nodes. The general formula for the first derivative is given as [2]:

𝛽𝑓 ′
𝑖−2 +𝛼𝑓 ′

𝑖−1 +𝑓 ′
𝑖 +𝛼𝑓 ′

𝑖+1 +𝛽𝑓 ′
𝑖+2 =

𝑎
𝑓𝑖+1 −𝑓𝑖−1

ℎ
+𝑏

𝑓𝑖+2 −𝑓𝑖−2
ℎ

+𝑐
𝑓𝑖+3 −𝑓𝑖−3

ℎ
(1)

where ℎ represents the uniform distance between nodes. In the case of the 6th

order accuracy used in this work, the coefficients are equal to: 𝛽 = 0, 𝛼 = 1
3 , 𝑎 = 7

9 ,
𝑏 = 1

36 , 𝑐 = 0. For non-periodic problems it is necessary to reduce the order of
approximation near the boundaries. For 𝑖 = 2,𝑁 −1 (𝑁 – number of mesh nodes)
we used the 4th order formula (𝛽 = 0, 𝛼 = 1

4 , 𝑎 = 3
4 , 𝑏 = 0, 𝑐 = 0), whereas for

𝑖 = 1,𝑁 we employed the asymmetric 3rd order approximations given as [2]:

𝑓 ′
𝑖 +2𝑓 ′

𝑖±1 = ± 1
ℎ

(−15
6

𝑓𝑖 +2𝑓𝑖±1 + 1
2

𝑓𝑖±2) (2)

where the negative sign is for 𝑖 = 𝑁. The Equation (2) written for every node
leads to the system of equations:

𝐀𝑓 ′ = 𝐁𝑓 (3)

where matrix 𝐀 is tridiagonal and matrix 𝐁 is pentadiagonal. This system is
shown in Equation (5), where 𝑃0, 𝑃1 and 𝑃2 present a sample division of the
system between 3 parallel tasks.

2.2. Right hand size
The right hand side (RHS) of Equation (5) has to be calculated to perform

calculations for derivatives. Moreover, the RHS must be calculated at first, before
the System (5) is solved. Despite the fact that the RHS is simple to calculate
(multiplying the matrix and the vector) it requires communication as the domain
is decomposed into independent subdomains (with distributed memory). Each
subdomain (MPI process) has to send values of function 𝑓 from two boundary
nodes to their neighboring MPI processes and receive data from them.

2.3. Tridiagonal matrix algorithm
The tridiagonal matrix is a special type of a matrix that has the nonzero

elements only on the main diagonal and two neighboring diagonals. When the
RHS is calculated the system to solve is reduced to:

𝐀𝑓 ′ = RHS (4)

This system could be solved by the tridiagonal matrix algorithm (TDMA) also
known as the Thomas algorithm. It could also be solved by the product of the
inverse tridiagonal matrix and RHS (𝑓 ′ = 𝐀−1RHS). Nevertheless, this method is
more time-consuming than the TDMA. The TDMA is carried out in two steps:

Hybrid MPI/Open-MP Acceleration Approach for High-Order Schemes for CFD 183

𝑃 0 𝑃 1 𝑃 2

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

1
2

1 4
1

1 4
0

1 3
1

1 3
⋱

⋱
⋱

⋱
⋱

⋱
1 3

1
1 3

⋱
⋱

⋱
⋱

⋱
⋱

1 3
1

1 3

0
1 4

1
1 4

2
1⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

𝑓′ 1 𝑓′ 2 𝑓′ 3 ⋮
𝑓′ 𝑖−

1

𝑓′ 𝑖

𝑓′ 𝑖+
1 ⋮

𝑓′ 𝑁
−

2

𝑓′ 𝑁
−

1

𝑓′ 𝑁

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

=
1 ℎ

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

−
15 6

2
1 2

−
3 4

0
3 4

0
−

1 36
−

7 8
0

7 8
1 36

⋱
⋱

⋱
⋱

⋱
⋱

⋱
⋱

⋱
⋱

−
1 36

−
7 8

0
7 8

1 36
⋱

⋱
⋱

⋱
⋱

⋱
⋱

⋱
⋱

⋱
−

1 36
−

7 8
0

7 8
1 36

0
−

3 4
0

3 4
1 2

2
−

15 6

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

𝑓 1 𝑓 2 𝑓 3 ⋮
𝑓 𝑖

−
1

𝑓 𝑖 𝑓 𝑖
+

1 ⋮
𝑓 𝑁

−
2

𝑓 𝑁
−

1

𝑓 𝑁

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

(5
)

184 M. Saczek, K. Wawrzak, A. Tyliszczak and A. Boguslawski

• forward loops from 1 to 𝑛 and preparing coefficients 𝑑 and 𝛾

{𝑑𝑖 = 𝑐𝑖/𝑏𝑖 where 𝑖 = 1
𝑑𝑖 = (𝑏𝑖 −𝑎𝑖 ⋅𝑑𝑖−1)/𝑐𝑖 where 𝑖 = 2,3,…,𝑛 (6)

{𝛾𝑖 = RHS𝑖/𝑏𝑖 where 𝑖 = 1
𝛾𝑖 = (RHS𝑖 −𝑎𝑖 ⋅𝛾𝑖−1)/(𝑏𝑖 −𝑎𝑖 ⋅𝑑𝑖−1) where 𝑖 = 2,3,…,𝑛 (7)

• backward loops from 𝑛 to 1 and getting the result 𝑥

{𝑓 ′
𝑖 = 𝛾𝑖 where 𝑖 = 𝑛

𝑓 ′
𝑖 = 𝛾𝑖 −𝑑𝑖 ⋅𝑥𝑖+1 where 𝑖 = 𝑛−1,𝑛−2,…,1 (8)

and requires to be done step by step in a serial fashion.

2.4. Parallel TDMA “arrowhead” method
The arrowhead method [7] is one of the commonly used partitioning

methods which allows solving Equation (4) in a parallel way. The method relies on
reducing the initial system to a new system with diagonally independent blocks,
as is presented in Figure 3.

Figure 3. Tridiagonal system rearrangement into arrowhead form [7]

The matrix is rearranged in the following way:
• choose the number of subsystems 𝑀 which can correspond to a number of MPI

processes. Such subsystems are shown in Figure 3 and are separated by red
lines;

• mark 𝑀 − 1 separations block-rows (orange, green, red and grey colors) for
every subsystem without the last one;

• mark the corresponding block-column (blue);
• shift the marked separation block-rows to the bottom;
• shift the marked separation block-columns to the right.

The global formula of this system is written as

(𝑆 𝑊𝑟
𝑊𝑙 𝐻)(𝑓 ′

𝑠
𝑓 ′

ℎ
) = (RHS𝑠

RHSℎ
) (9)

where 𝑆 is the subsystem, 𝐻 – the head (orange squares), 𝑊𝑙𝑟 – the wings (green
and blue squares).

Hybrid MPI/Open-MP Acceleration Approach for High-Order Schemes for CFD 185

The solution of the system is given by the relations

{
𝑓 ′

𝑠 = 𝑆−1RHS𝑠 −𝑆−1𝑊𝑟𝑓 ′
ℎ

𝑓 ′
ℎ = (𝐻 −𝑊𝑙𝑆−1𝑊𝑟)−1 (RHSℎ −𝑊𝑙𝑆−1RHS𝑠)

(10)

The system is solved in the following steps:

• compute 𝑍𝑘 = (𝑆𝑘)
−1

𝑊 𝑘
𝑙 on each process, which leads to the TDMA solution

for 𝑆𝑘𝑍𝐾 = 𝑊 𝑘
𝑙 ;

• compute 𝐻 −∑𝑀
𝑘−1 𝑊 𝑘

𝑙 𝑍𝑘 on the root process;

• compute 𝑧𝑘 = (𝑆𝑘)
−1

RHS𝑘
𝑠 on each process, which leads to the TDMA solution

for 𝑆𝑘𝑧𝐾 = RHS𝑘
𝑠 ;

• compute RHSℎ −∑𝑀
𝑘−1 𝑊 𝑘

𝑙 𝑧𝑘 on the root process.
Synchronize the data to master the process and:

• compute 𝑓 ′
ℎ which is a result for 𝑀 −1 subsystems

𝑓 ′
ℎ = (𝐻 −𝑊𝑙𝑆−1𝑊𝑟)−1 (RHSℎ −𝑊𝑙𝑆−1RHS𝑠) which leads to the TDMA solu-

tion for (𝐻 −𝑊𝑙𝑆−1𝑊𝑟)𝑓 ′
ℎ = (RHSℎ −𝑊𝑙𝑆−1RHS𝑠);

• scatter 𝑓 ′
ℎ and correct the result on every process 𝑥𝑘

𝑠 = 𝑧𝑘 −𝑍𝑘𝑥ℎ.
This method is very simple to implement and allows one to reduce the

computation time of the TDMA. Moreover, the arrowhead algorithm could be
applied in another diagonal system with a five-diagonal matrix or a seven-diagonal
matrix.

2.5. Test program
The solver to simulate fluid flow problems has to make many different

calculations. However, one of its most important tasks is approximation of
derivatives. The SAILOR code decomposes the domain using the MPI library,
in one (𝑦) of the three directions (𝑥,𝑦,𝑧), as presented in Figure 4. Assuming
for instance that the number of nodes is 𝑁 × 𝐾 × 𝑀, each MPI process has
𝑁 × 𝐾𝑝 × 𝑀 nodes, where 𝑝 is the number of MPI processes and 𝐾𝑝 = 𝐾/𝑝.
In this approach the calculations of derivatives (using TDMA) in directions
(𝑥,𝑧) are obtained without any exchange of data. Each MPI process has all
needed nodes in these directions, therefore, communication between MPI processes
is not required. Unfortunately, communication between nodes is necessary to
make calculations of derivatives in the decomposed direction. In this direction,
each MPI process has some of the nodes only. Furthermore, communication is
required for the TDMA as well as for the RHS calculations. The test program
was created to present a hybrid MPI +OpenMP algorithm. The test program
performs the calculations of derivatives in all spatial directions (𝑥,𝑦,𝑧). The
subdomains should be additionally divided to allow OpenMP threads to cooperate
with MPI processes. It is important to mention that this division is logical which
means that there are no additional subdomains created but it enables threads to
work on individual parts of a subdomain. For instance, if the subdomain size is
𝑁 ×𝐾𝑝 ×𝑀 then each OMP thread that takes part in an MPI process performs

186 M. Saczek, K. Wawrzak, A. Tyliszczak and A. Boguslawski

calculations for the 𝑁/th × 𝐾𝑝 × 𝑀 or 𝑁 × 𝐾𝑝/th × 𝑀 nodes, where th is the
number of the OMP threads. Moreover, it does not matter which thread performs
the calculations for individual parts of the subdomain because this tool works
on a shared memory (OpenMP threads have access to the same memory in the
same MPI process). For 𝑦-derivatives (communication between MPI processes is
required) the division should be made in the second direction as presented in
Figure 5 (a). For other derivatives (communication between MPI processes in not
required) the division should be made in the same direction as the MPI processes,
as shown in Figure 5 (b).

Figure 4. Domain decomposition into 16 subdomains in the first direction (𝑦)

Figure 5. Domain decomposition into 4 subdomains in the first direction (𝑦) and into
4 subdomains in: (a) – the second direction (𝑥), (b) – the same direction (𝑦)

3. Results
The tests were run on the PLGRID platform with the computational power

of about 2399 TFlops. The program was run and compiled using the Intel MPI
library version 2018 Update 1 and OpenMP, version 5.0. Taking into consideration
the cluster specification shown in Table 1 specific meshes have to be chosen
with the number of nodes allowing an equal division between the parallel tasks.
As can be observed, each node of the cluster in this specification consists of 2
physical processors with 12 cores each. However, for the end user, these processors

Hybrid MPI/Open-MP Acceleration Approach for High-Order Schemes for CFD 187

are divided into four logical processors with six cores. Hence, the mesh sizes
have to be a multiple of six. The investigations were carried out for six mesh
sizes and for different numbers of cores. The meshes were structured and the
distance between the mesh points was constant. Details are shown in Table 2.
The tests were performed for three different cases: a pure MPI tool and a serial
TDMA, a pure MPI and a parallel TDMA (arrowhead), hybrid (MPI/OpenMP) and
parallel TDMAs (arrowhead). Moreover, the analysis of these cases includes the
workload time of cores that is essential to calculate derivatives in two directions
(𝑥,𝑧) where communication is not required and in three directions(𝑥,𝑦,𝑧) where
communication is necessary in one of them (𝑦). Furthermore, the workload time
needed to calculate the RHS and the time that is essential to calculate the TDMA
are investigated separately.

Table 1. Test cluster specification

processors Intel E5-2680v3
socket per node 2
cores per socket 12
clock rate 2.50GHz
memory size 128GB
nodes 2160
network Infiniband FDR 56Gb/s

Table 2. Nodes needed for cores and meshes

cores 1 6 12 24 48 60 96 192
𝑀1 – 240 ×240 × 240 1 1 1 1 2 3 — —
𝑀2 – 240 ×480 × 240 1 1 1 1 2 3 4 —
𝑀3 – 480 ×480 × 480 1 1 1 1 2 3 4 —
𝑀4 – 240 ×960 × 240 1 1 1 1 2 3 4 8
𝑀5 – 480 ×960 × 480 1 1 1 1 2 3 4 8
𝑀6 – 960 ×960 × 960 1 1 1 1 2 3 4 8

There are two important metrics for parallel systems: speedup and efficiency.
Speedup is defined as the ratio of the serial runtime of the best sequential
algorithm for solving a problem to the time taken by the parallel algorithm to solve
the same problem on 𝑝 processors. Efficiency is defined as the ratio of speedup to
the number of processors. The efficiency measures the fraction of time for which
a processor is usefully utilized.

The speedup is measured by function: 𝑆 = 𝑇 ′/𝑇 1, where 𝑇 1 is the runtime
for a basic TDMA solver on one computation unit and 𝑇 ′ is the runtime for
a particular configuration on 𝑝 processors. Efficiency is measured by the function
𝐸 = 𝑆/𝑝.

188 M. Saczek, K. Wawrzak, A. Tyliszczak and A. Boguslawski

As can be observed in Figures 6–7 the hybrid solution offers excellent
performance especially for many cores and it is less efficient for smaller numbers
of cores. For a minimum number of cores, it offers a similar efficiency as a serial
TDMA with a pure MPI. Moreover, it can be seen that the hybrid approach
as well as MPI with a parallel TDMA is closer to the linear speedup when
a bigger mesh is used. An MPI with a parallel TDMA is characterized by better
performance than the hybrid approach for small numbers of cores. Moreover, it
achieves a linear speedup. Another interesting issue that is worth noting is the
so-called “breakpoint”. It is a point where two solutions offer the same speedup.
The breakpoint moves slightly to the right along with a bigger mesh, however,
it is still between 12 and 24 cores for the investigated meshes. The maximum
performance achieved for the hybrid solution is:
• for 𝑀1:

– about 4.5 times faster than serial TDMA and pure MPI
– about 3.1 times faster than parallel TDMA method and pure MPI

• for 𝑀2:
– about 6.7 times faster than serial TDMA and pure MPI
– about 3.7 times faster than parallel TDMA method and pure MPI

• for 𝑀3:
– about 6.2 times faster than serial TDMA and pure MPI
– about 5.4 times faster than parallel TDMA method and pure MPI

• for 𝑀4:
– about 9.4 times faster than serial TDMA and pure MPI
– about 5.11 times faster than parallel TDMA method and pure MPI

• for 𝑀5:
– about 9 times faster than serial TDMA and pure MPI
– about 7.8 times faster than parallel TDMA method and pure MPI

• for 𝑀6:
– about 8.3 times faster than serial TDMA and pure MPI
– about 6.6 times faster than parallel TDMA method and pure MPI

These results show that the size of the mesh directly influences the maxi-
mum speedup. In Figure 7 it can be observed that a smaller size of the mesh in
the second (𝑥) and third(𝑧) direction enhances the speedup for the hybrid and
the MPI with a parallel TDMA approach. This results from reducing the distance
between the data stored in the memory. As is mentioned in the previous section
the domain is logically divided into OMP threads. Hence, the speedup for the
hybrid approach is smaller than the MPI with a parallel TDMA.

To check the solver’s scalability the investigations were performed for
cases where the derivatives were calculated in the second and third direction
(communication between nodes is not needed). The results are presented in

Hybrid MPI/Open-MP Acceleration Approach for High-Order Schemes for CFD 189

Figure 6. Speedup for three different cases and three different mesh sizes, where every
direction has the same size

Figure 7. Speedup for three different cases and two different mesh sizes, where first direction
has different size than second and third

Figures 8–9. In this investigation it was only the MPI and hybrid approaches
that were taken into account because the calculations of derivatives in the second
and third directions (𝑥,𝑧) performed using the MPI with a serial TDMA and the
MPI with a parallel TDMA are obtained in the same way. As can be observed the
scalabilities are on the same level. The higher efficiency on 60 cores for the MPI
approach is due to the fact that the computational potential of the node is not
fully utilized for the hybrid approach. 3 nodes (72 cores) have to be used to run the
program using 60 cores. Moreover, the hybrid approach is pinned to the so-called
numa nodes (a numa node is allocated on logical processors) where each numa
node reserves the 1/2 size of cache memory of a physical processor, whereas, the

190 M. Saczek, K. Wawrzak, A. Tyliszczak and A. Boguslawski

MPI processes which are pinned to cores can use the whole cache memory of the
processor (the cache memory is divided dynamically between the running cores).
Hence, in the case when 60 MPI processes are used on 3 nodes (maximum 72
cores) 1/5 of them have twice as much of the cache memory. Furthermore, the
workload times of the RHS as well as the TDMA are measured independently on
every process, and thus, the efficiency is better, if several of the MPI processes
work faster. Another interesting issue which can be observed is the super efficiency
of the MPI approach when executed on 6 and 12 cores, as shown in Figure 8. This
super efficiency is achieved owing to the decomposition of the domain into 6 and
12 subdomains, placed on different MPI processes. Thus, the distance between the
data stored in the memory is smaller. In contrast, the domain is not divided in
the hybrid approach for 6 (1 MPI process and 6 OMP threads) cores, whereas it
is divided into two subdomains only for 12 (2 MPI processes and 6 OMP threads
each) cores. It is also worth mentioning that 6 and 12 MPI processes are pinned
to cores of two physical processors (3 or 6 MPI processes per processor) and as
a result, the whole cache memory of processors is utilized on the node. By contrast,
in the hybrid approach, 6 cores are pinned to one physical processor, hence, only
half of the cache memory of one processor is used. Summing up, if there is too
much data for a particular core, the utilization of the computational potential is
limited and the super efficiency cannot exist.

Figure 8. RHS calculation efficiency for hybrid and MPI approach without communication,
for three different meshes

The last important part of analysis is a comparison of the efficiency of the
TDMA calculations for five cases:

• MPI approach in two directions (𝑥,𝑧)
• Hybrid approach in two directions (𝑥,𝑧)
• MPI approach with serial TDMA in three directions (𝑥,𝑦,𝑧)

Hybrid MPI/Open-MP Acceleration Approach for High-Order Schemes for CFD 191

Figure 9. TDMA calculation efficiency for hybrid and MPI approach without communication,
for three different meshes

Figure 10. TDMA calculation efficiency for hybrid and MPI approach for Mesh3 without and
with communication in two and three directions TDMA calculation efficiency for hybrid and

MPI approach for 𝑀3 without and with communication in two and three directions

• MPI approach with parallel TDMA in three directions (𝑥,𝑦,𝑧)
• Hybrid approach with parallel TDMA in three directions (𝑥,𝑦,𝑧)

As can be seen in Figure 10 the efficiency for TDMA in two directions (𝑥,𝑧)
is characterized by excellent scalability. Unfortunately, the efficiency rapidly goes
down, when TDMA calculations in three directions are taken into consideration.
It is only for the hybrid approach that the efficiency decreases slower than in the
other cases. It is worth mentioning that in the hybrid approach for 6 cores, the
domain is divided in the logical way only. Therefore, it will be always worse for

192 M. Saczek, K. Wawrzak, A. Tyliszczak and A. Boguslawski

a smaller number of cores. On the other hand, it reduces the amount of data to
send and receive and it can offer much better performance for larger numbers
of cores. As is shown in Figure 10 the major limitation of the entire solution
algorithm is the TDMA parallel method which is efficient for small numbers of
cores only.

4. Conclusions
There is great demand for fast and efficient computational systems in

today’s word. The hybrid MPI/OpenMP approach is supposed to enhance the
speed of calculations for high order methods, and this has been proved in the
present work. A comparison of three approaches shows the important advantages
of the hybrid model over the pure MPI with a serial TDMA and the pure MPI
with a parallel TDMA. It is worth mentioning that the size of the computational
domain directly influences the performance of calculations. The tests indicate that
the larger the domain used, the larger acceleration is achieved.

Acknowledgements
The research was supported by the Polish National Science Centre, Project

No. 2016/21/B/ST8/00414. The computations were carried out using the PL-Grid
Infrastructure.

References
[1] Wang Z, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H, Hartmann R,

Hillewaert K, Huynh H, Kroll N, May G, Persson P, Leer B and Visbal M 2013 Int. J.
Numer. Methods Fluids 72 811

[2] Lele S 1992 J. Comput. Phys. 103 16
[3] Hockney R 1965 J. ACM 12 16
[4] Wang H 1981 ACM Trans. Math. Softw. 7 170
[5] Mattor N, Williams T and Hewett D 1995 Parallel Comput. 21 1769
[6] Sun H, Zhang H and Ni L 1992 IEEE on Trans.Comput. 41 286
[7] Belov P, Nugumanov E and Yakovlev S 2015 Preprint, arXiv 1505.06864
[8] Stone H 1975 ACM Trans.Math. Softw. 1 289
[9] Rao S C S 2008 Parallel Comput. 34 177

[10] Qin J and Nguyen D 1998 Adv. Eng. Softw. 29 395
[11] Afzal A, Ansari Z, Faizabadi A and Ramis M 2017 Arch. Comput. Method E 24 337
[12] Dagum Land Menon R 1998 IEEE Comput. Sci. Eng. 5 46
[13] William D, Lusk E and Skjellum A 1999 Using MPI: Portable Parallel Programming with

the Message-Passing Interface 2nd edition, MIT Press, Cambridge
[14] Rabenseifner R, Hager G and Jost G 2009 Proc. Euromicro Int. Conf. Parallel Distrib.

Netw. Based Process 17 427
[15] Amritkar A, Deb S and Tafti D 2014 J. Comput. Phys. 256 501
[16] Mavriplis D 2002 Int. J. High Perform. Comput. Appl. 16 395
[17] Maknickas A, Kačeniauskas A, Kačianauskas R, Balevičius R and Algis Džiugys A 2006

Informatica 17 207
[18] Jia R and Sundén B 2004 Comput. Fluids 33 57
[19] Mininni P, Rosenberg D, Reddy R and Pouquet A 2011 Parallel Comput. 37 316
[20] Gropp W, Kaushik D, Keyes D and Smith B 2001 Parallel Comput. 27 337
[21] Wawrzak K, Boguslawski A and Tyliszczak A 2015 Flow Turbul. Combust. 95 437

Hybrid MPI/Open-MP Acceleration Approach for High-Order Schemes for CFD 193

[22] Aniszewski W, Boguslawski A, Marek M and Tyliszczak A 2012 J. Comput. Phys.
231 7368

[23] Wawrzak A and Tyliszczak A 2017 Arch. Mech. 69 157
[24] Tyliszczak A 2014 J. Comput. Phys. 276 438

