PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stan wykorzystania energii geotermalnej w Europie i na świecie w 2020 r.

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The state of geothermal energy utilization in Europe and the world as of 2020
Języki publikacji
EN
Abstrakty
EN
According to data presented at the World Geothermal Congress 2020+1 and the European Geothermal Energy Council (EGEC) market report, a significant increase in the use of geothermal energy was recorded worldwide in 2015-2020. The number of countries reporting direct use of geothermal resources (including ground source heat pumps) increased to 88 (34 in Europe), while the number of countries reporting geothermal electricity production to 29 (11 in Europe). The increase in the installed geothermal capacity for direct use in the last 5years was over 50%, reaching approx. 108 GWt (use of thermal energy slightly exceeds ca. 1 EJ/year), wherein ground source heat pumps (GSHP) possess the highest percentage share in the above increase. They are responsible for almost 60% of the energy produced. The world leaders in terms of direct use of geothermal energy, excluding ground source heat pumps, are in the following order: China, Turkey, Japan, Iceland, Hungary, and New Zealand. China, where the installed capacity of GSHP amounted to approx. 26 GWt, holds the scepter of the world leader in this field. Three European countries: Sweden, Germany and Finland, are on the “top five” list in the world in terms of installed capacity at geothermal heat pumps. The total installed capacity of geothermal power plants in the world at the end of 2019 amounted to approx. 16 GWe (approx. 30% increase in 2015-2019), which allowed for the production of approx. 95 TWh/year of electricity. The world leader in terms of generating electricity from geothermal energy is the United States, with an installed capacity of approx. 3.7 GWe. The remaining countries with installed capacity exceeding 1 GWe are: Indonesia, the Philippines, Turkey, Kenya, New Zealand, and Mexico. A growing interest in generating electricity by using binary systems, in particular in Europe has been noticed. In the period 2015-2019, three new binary installations in Croatia, Hungary, and Belgium were put into operation. In 2020, 8 new geothermal power plants were commissioned in Turkey, which provide additional capacity of approx. 165 MWe. In Europe, geothermal electricity is produced in 11 countries, and the installed capacity in 139 power plants has been estimate data round 3.5 GWe. In recent years, in the world, and especially in Europe, a significant increase in interest in the recovery of critical elements (CRMs) from geothermal waters, mainly lithium, has been noticed. The initially identified potential indicates the possibility of covering up to approx. 25% of the EU countries' demand for lithium from geothermal brines by 2030. In many countries, geothermal energy is one of the most promising sources of renewable energy, especially when it comes to environmental and economic considerations. In some countries of the world, geothermal energy is a key element of the economy, guaranteeing energy security and enabling the achievement of the goals of climate neutrality. In other, less developed countries, geothermal energy may constitute the basic source of energy, and sometimes a significant source of national income, conditioning economic development and increasing the country's economic and energy independence.
Rocznik
Strony
566--577
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr.
Twórcy
autor
  • AGH Akademia Górniczo-Hutnicza, Wydział Geologii Geofizyki i Ochrony Środowiska, al. Mickiewicza 30, 30–059 Kraków
Bibliografia
  • 1. AGRICOLA G. 1556 - De Re Metallica. Translated from the first latin edition of 1556. Produced by Farmer M., Sentoff S.H. and the online distributed proofreading team at https://www.pgdp.net. https://www.gutenberg.org/files/38015/38015-h/38015-h.htm
  • 2. BERTANI R. 2005 - World Geothermal Generation 2001-2005: State of the Art. Proceedings World Geothermal Congress 2005, Turkey, Antalya: 19; https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/0008.pdf
  • 3. BERTANI R. 2010 - Geothermal Power Generation in the World 2005-2010. Update Report. Proceedings World Geothermal Congress 2010, Indonesia, Bali: 41; https://www.geothermal-energy.org/pdf/IGA- standard/WGC/2010/0008.pdf
  • 4. BERTANI R. 2015 - Geothermal Power Generation in the World 2010-2014. Update Report. Proceedings World Geothermal Congress 2015, Australia - New Zealand: 19; https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/01001.pdf
  • 5. BOURCIER W.L., LIN M., NIX G. 2005 - Recovery of Minerals and Metals from Geothermal Fluids. 2003 SME Annual Meeting Cincinnati, OH, United States February 24, 2003 through February 26, 2003; https://core.ac.uk/download/pdf/71314413.pdf
  • 6. BOYLE R.W. 1979 - The geochemistry of gold and its deposits. Canadian Geol. Surv. Bull., 280.
  • 7. BROWN K.L. 1986 - Gold deposition from geothermal discharges in New Zealand. Economic Geol., 81 (4): 979-983.
  • 8. DUMAS P., BARTOSIK A. 2014 - Geothermal DH Potential in Europe. European Geothermal Energy Council. GeoDH project report: D2.2 Geothermal DH Potential in Europe; http://geodh.eu/wp-content/uploads/2014/11/GeoDH-Report-D-2.2-final.pdf
  • 9. ELDESSOUKY H., ETTOUNEY H. 2000 - MSF developments may reduce desalination costs. Water and Waste Water Intern., 15 (3): 20-21.
  • 10. GARABETIAN T. 2020 - Geothermal Lithium in Europe. An industrial strategy for the geothermal lithium battery value-chain. EGEC Report; https://www.egec.org/wp-content/uploads/2020/05/Geothermal-Lithium-paper_FINAL-Version.pdf
  • 11. GARABETIAN T., DUMAS P., SERRANO C., MAZZAGATTI V., KUMAR S., DIMITRISINA R., RUAUD J., TRUONG C. 2020 - 2019 EGEC Geothermal Market Report. Key Findings; https://www.egec.org-/wp-content/uploads/2020/06/MR19_KeyFindings_new-cover.pdf
  • 12. GARABETIAN T., DUMAS P., SERRANO C., MAZZAGATTI V., KUMAR S., DIMITRISINA R., ERBANOVA H., KATECHI S. 2021 - 2020 EGEC Geothermal Market Report. Key Findings; https://www.egec.org/wp-content/uploads/2021/06/MR20_KF_Final.pdf
  • 13. GOETZL G., DILGER G., GRIMM R., HOFMANN K., HOLECEK J., CERNAK R., JANZA M., KOZDRÓJ W., KŁONOWSKI M., HAJTO M., GABRIEL P., GREGORIN S. 2020 - Strategies for Fostering the Use of Shallow Geothermal Energy for Heating and Cooling in Central Europe - Results from the Interreg Central Europe Project GeoPLASMA-CE. Proceedings of the World Geothermal Congress, Iceland, Reykjavik 2020+1.
  • 14. HAJTO M. 2018 - Potencjał geotermalny Polski oraz możliwości adaptacji międzynarodowej klasyfikacji zasobów geotermalnych UNFC-2009. Nafta-Gaz, 74: 898-904.
  • 15. HAJTO B., PAPIERNIK B. 2020 - The Approach to 3D Numerical Modeling in Order to Evaluate an Environmental Constraints and Assessment of Shallow Geothermal Resources in Urban Areas on the Example of Krakow, Poland. Proceedings of the World Geothermal Congress, Iceland, Reykjavik 2020+1: 10.
  • 16. HAJTO M., PRZELASKOWSKA A., MACHOWSKI G., DRABIK K., ZĄBEK G. 2020 - Indirect Methods for Validating Shallow Geothermal Potential Using Advanced Laboratory Measurements from a Regional to Local Scale – A Case Study from Poland. Energies 2020, 13 (20): 5515. http://www.energizers.agh.edu.pl
  • 17. https://cire.pl
  • 18. https://climeon.com/geothermal-plants
  • 19. https://eavor.com
  • 20. https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en - tzw. czwarta lista pierwiastków krytycznych Unii Europejskiej https://globalatlas.irena.org - Global Atlas for Renewable Energy 4.0 https://iddp.is
  • 21. https://tiny.pl/9x4sg
  • 22. https://v-er.eu
  • 23. https://www.carbfix.com
  • 24. https://www.cire.pl/item
  • 25. https://www.egec.org/european-geothermal-innovation-award
  • 26. https://www.egec.org/time-to-invest-in-clean-geothermal-lithium-made-in-europe
  • 27. https://www.eramet.com/en
  • 28. https://www.eramet.com/en/activities/innovate-design/eugeli-project
  • 29. https://www.eurelectric.org
  • 30. https://www.gadrilling.com/plasmabit
  • 31. https://www.geo-coat.eu
  • 32. https://www.geodrillproject.eu
  • 33. HUTTRER G.W. 2020 - Geothermal Power Generation in the World 2015-2020. Update Report. Proceedings World Geothermal Congress 2020, Iceland: 17; https://www.geothermal-energy.org/pdf/IGAstan- dard/WGC/2020/01017.pdf
  • 34. KĘPIŃSKA B. 2020 - Geothermal Energy Country Update Report from Poland, 2015-2019. Proceedings World Geothermal Congress 2020, Reykjavik, Iceland: 13.
  • 35. LEWICKA E., GUZIK K., GALOS K. 2021 – On the Possibilities of Critical Raw Materials Production from the EU's Primary Sources. Resources, 10 (5): 50.
  • 36. LUNDJ.W., TOTHA.N. 2020 – Direct Utilization of Geothermal Energy 2020. Worldwide Review. Proceedings World Geothermal Congress 2020, Iceland: 39; https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/01018.pdf
  • 37. MERTOGLU O., SIMSEK S., BASARIR N. 2020 - Geothermal Energy Use - Projections, Country Update for Turkey; https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/01049.pdf
  • 38. MOYLE A.J., DOYLE B.J., HOOGVLEIT H., WARE A.R. 1990 - Ladolam gold deposit, Lihir Island. [W:] Geology of the mineral deposits of Australia and Papua New Guinea. Hughes F.E (red.)., AUISMM Monograph, 2 (14): 1793-1806.
  • 39. PORT PC 2019 – Raport rynkowy PORT PC: 2019. Rynek pomp ciepła w Polsce w latach 2010-2018. Perspektywy rozwoju rynku pomp ciepła do 2030 roku; https://portpc.pl/pdf/raporty/Raport_PORTPC_wersja_final_2019.pdf
  • 40. PORT PC 2020 - Raport rynkowy PORT PC: 2020. Scenariusze elektryfikacji ogrzewania w budynkach jednorodzinnych w Polsce do 2030 roku. Rynek pomp ciepła w Polsce w latach 2010-2019. Perspektywy rozwoju rynku pomp ciepła do 2030 roku; http://portpc.pl/pdf/raporty/01-70_Raport_2020_P.pdf
  • 41. RAGNARSSON Á.R., STEINGRÍMSSON B., THORHALLSSON S. 2020 - Geothermal Development in Iceland 2015-2019. Proceedings World Geothermal Congress 2020, Reykjavik, Iceland; https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2020/01063.pdf
  • 42. SAPIŃSKA-ŚLIWA A., DUDEK M., WIŚNIOWSKI R., JASZCZUR M., ŚLIWA T. 2016 - Pozyskiwanie surowców mineralnych z wód termalnych w Polsce. Przemysł Chem., 95 (8): 1524-1528.
  • 43. TOMASZEWSKA B. 2013 - Utylizacja schłodzonych wód termalnych. Problemy i propozycje rozwiązań alternatywnych. Technika Poszukiwań Geologicznych, Geotermia, Zrównoważony Rozwój, 52 (1): 91-102.
  • 44. TOMASZEWSKA B. (red.), BODZEK M., DENDYS M., KASZTELEWICZ A., KĘPIŃSKA B., MIECZNIK M., PAJĄK L., RAJCA M., TYSZER M. 2018 - Pozyskanie wód przeznaczonych do spożycia oraz cieczy i substancji balneologicznych w procesie uzdatniania wód geotermalnych. Wyd. IGSMiE PAN Kraków; https://min-pan.krakow.pl/wydawnictwo/wp-content/uploads/sites/4/2019/09/Tomaszewska-2018-Pozyskanie.pdf.
  • 45. TSIOURTIS N.X. 2001 - Desalination and the environment. Desalination, 141: 223-236.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2738ddab-e23d-4795-a254-97c5fba63000
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.