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This review paper focuses on the up-to-date machinability characteristics 
of milling processes such as cutting forces, surface roughness and tool 
wear and their impacts on the cutting mechanism. The methodology pur-
sued in this paper is to analyze the previous research articles published 
between 2019–2022 classifying them into the subcategories that use mill-
ing operation as manufacturing strategy. As known, milling is one of the 
most used machining processes in industry and often applied for academic 
studies for a wide range of materials. Therefore, used sensor systems, main 
aim and the preferred methodology were summarized in the context of 
this paper. Seemingly, a great number of machinability papers have been 
published recently which focuses on the several types of engineering ma-
terials and utilized various types of sensor system to improve the surface 
roughness and tool life. In addition, the investigation showed that optimi-
zation approaches have been applied broadly to detect the best machining 
conditions. Also, it was observed that several modeling approaches such 
as finite element analysis is a good alternative to analyze the process. 

Introduction 

Machining is the most popular manufacturing method in 
the industry. Milling is a widely used method in machin-
ing operations. Other primary methods can be sorted as 
turning, drilling, and grinding. Milling is the process of 
removing chips from the material of the cutting tool with 
the movement of the workpiece material along the coor-
dinate planes at each turn of the cutting tool. The cutting 
tool used in this process is not single edged as in the 
turning process, but multi-edged. For this reason, the 
cutting mechanics are different from the other machin-
ing operations, and it is important to investigate the mill-
ing process by researchers. Therefore, machinability 
tests, which remain popular, are carried out to under-
stand the mechanics of cutting and to ensure that the ma-
terials are produced as desired. The main purpose of 
performing these tests is due to the undesired changes 
due to the interaction of the cutting tool and workpiece 
material with each other during machining. These 
changes are factors such as tool wear, temperature, cut-
ting force and surface roughness. The machining param-
eters used during the process (cutting speed, feed rate, 
depth of cut and cutting conditions etc.) constitute the 
criteria of machinability tests. In these criteria, output 
parameters such as temperature, force, wear, and rough-
ness occur during the process. With the interaction of the 
input and output parameters, it is ensured that the prod-
uct with the desired quality and efficiency is obtained. 
Therefore, machinability tests are very important in the 
industry.Some of the typical machinability properties of 
milling processes include:  
✓ The surface roughness that depends on factors such 

as the tool geometry, cutting speed, feed rate, and
depth of cut.

✓ Chip formation: the type and shape of chips pro-
duced during milling can affect the surface finish and 
tool wear. Long, continuous chips are desirable, 
while short, broken chips can cause tool wear and
surface roughness.

✓ Tool wear: the cutting tool can experience different 
types of wear during milling, including flank wear,
crater wear, and chipping. The rate and type of wear 
depend on factors such as the tool material, coating, 
cutting speed, feed rate, and cutting depth. 

✓ Material removal rate: the material removal rate 
(MRR) is the volume of material removed per unit 
time. The MRR depends on factors such as the cutting 
speed, feed rate, depth of cut, and workpiece material 
properties. 

✓ Power consumption: the power consumption during 
milling depends on the cutting parameters, tool ge-
ometry and material, and workpiece material prop-
erties. High power consumption can indicate exces-
sive tool wear or an inefficient cutting process.

✓ Surface integrity: the milling process can affect the 
surface integrity of the workpiece, including residual 
stresses, surface hardening, and microstructural 
changes. The surface integrity depends on factors 
such as the cutting parameters, workpiece material 
properties, and cooling and lubrication methods 
used. 

The creation of a convenient and ideal machining system 
in machining brings reliable operation. One of the most 
important output parameters is tool wear, which is in-
cluded in many studies in the literature. The reason for 
this is that the output parameters are adversely affected 
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due to the machining parameters that affect the tool 
wear. That is, tool wear is affected by cutting speed, feed 
rate, tool wear resistance, vibration, temperature, poor 
unmachined surface quality and high cutting forces dur-
ing the process. Thus, there is a continuous change in the 
dimensions of the workpiece, resulting in an increase in 
the number of wasted parts. To prevent these negative 
situations, it is necessary to determine the amount of 
wear by measuring methods. If there are faulty values in 
line with the measured values, the required parameters 
and processing conditions are changed to minimize the 
wear and the part size is brought to the desired size and 
quality. 
Another important criterion in machinability tests is sur-
face roughness [1, 2]. Tool wear is the most important 
factor affecting the deterioration of the machined sur-
face of the workpiece material. As a result of the defec-
tive surface and part, it will not be produced within the 
quality tolerances and will cause the geometric toler-
ances to change. For example, due to tool wear after the 
finishing process of a prismatic part, there will be differ-
ences in the thickness of the part as well as the rough-
ness differences between the starting and ending sur-
faces of the part [3, 4]. As a result of the process, linearity 
will be deteriorated and a curved surface will be ob-
tained. In addition, depending on the increased wear 
amount, the cutting force required to remove chips also 
increases and causes the tool to break [5]. The re-
sistances that occur during chip removal are overcome 
by cutting forces. Cutting forces cause some defor-
mations on both the tool and the workpiece, and they 
change the tool-workpiece position and affect both the 
surface quality and the tool. The cutting part-tool-ma-
chine chain is a flexible system. Therefore, during chip 
removal, vibrations may occur due to the variable cut-
ting force. When these vibrations are severe, they also 
create chatter, which causes poor surface quality [6]. Fig-
ure 1 represents the concept of the article. 

Fig. 1. The concept of the article 

We hope the presented approach will be useful as a guide 
for people in both the academic community and industry 
researching machinability criteria in milling operations. 
The aim of the study is to determine the effects of pre-
ferred machinability input parameters on cutting forces, 
surface roughness and tool wear in machinability studies 
performed by milling method. For this reason, the study 

is discussed on cutting force, surface roughness and tool 
wear. 

The effect of cutting forces in milling 

In order to carry out efficient operations in the milling 
method, cutting forces must be determined and the cut-
ting tools and workpieces must be selected and dimen-
sioned properly. Therefore, it is necessary to investigate 
the cutting force in detail. The thickness of the chip 
formed during the process varies throughout the cutting 
cycle, resulting in variable cutting forces and contact 
conditions. In addition, fluctuations occur in cutting 
forces due to the cutting of more than one cutting edge 
in milling. The cutting forces in milling vary according to 
many factors such as the type of milling, the position of 
the cutting tool, the workpiece material, the geometry of 
the cutting tool, the thickness of the chip formed during 
the process, the type of wear on the cutting tool and the 
machining parameters. Below the literature review of 
machinability studies made by milling is presented. 
Milling process researchs are important to determine 
the environmental conditions and cutting parameters. 
The voxel based prediction analysis results were com-
pared with the experimental results with regard to cut-
ting force [7]. Discretized voxel method that accepted 
relatively basic prediction methods were convenient 
with experimental study an literature. Generally milling 
force is predicted from orthogonal cutting data [8]. But 
machine tool systems' dynamic conditions have serious 
effects on its prediction accuracy. A new data-driven pre-
diction method has been suggested that requires few 
tests by authors. A sufficient cutting data has been ob-
tained with the effect of dynamic properties thanks to a 
correction coefficient by the cutting forces orthogonal 
helical milling transformation. Predicting milling force is 
important to improve the tool life and to guarantee ma-
chining quality[9]. Much research has been conducted to 
predict a credible cutting force [10]. proposed a new ap-
proach for estimating the cutting force coefficient. Ma-
chining experiments were conducted with different tools 
to compare each other for instantaneous cutting force 
prediction. Thus, they showed that highly accurate esti-
mation can be obtained for the variable workpiece and 
tools. An algorithm was designed to predict the cutting 
force truly for variable tool guidance with the Cutter 
Workpiece Engagement (CWE) challenging [11] [12]. It 
was established as a geometric analytical method to pre-
dict the milling process with a cutting force model. Ber-
nini et al. have revealed that the micro-milling process 
with material separation model could be validated for 
cutting force. An online estimation of specific force coef-
ficient (SFC) is proposed [13]. The principal Component 
Regression model accepted the five different cutting 
speeds on two different machine tools to estimate the 
variable of coefficients modeled a predicting cutting 
force method milling process. Euler-Bernoulli beam the-
ory has been used to calculate the deformation of a work-
piece at any cutting depth [14]. A new method to deter-
mine both radial and axial depth of circumferential end 
milling process using cutting force signal has been devel-
oped by [15]. The literature survey is summarized in Ta-
ble 1. 
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Table 1. Literature review of cutting force studies 

Type of 
sensors 

Machine Process Workpiece 
Output parame-

ters 
Aim Ref. 

Dynamometer 
CNC 
vertical 
machine 

Milling 
EN AW 
6061 

Voxel sizes varia-
tion, number of 
flutes 

A comparison be-
tween experiments 
with different types 
of end mill tools and 
predicted force  

[7] 

Dynamometer 
CNC 
vertical 
machine 

Milling Ti6Al4V 

Cutting force coeffi-
cients, cutting force 
correction factor 

To Predict Milling 
force with Transfer 
learning methods  

[8] 

Dynamometer 
CNC 
vertical 
machine 

Milling Ti6Al4V 

Machine tool cor-
rection coefficient, 
cutting force pre-
dictions 

A new cutting force 
prediction model 
consist of with or-
togonal and experi-
mental data. 

[16] 

Dynamometer, 
power meter 

3-axis 
vertical 
machine 

Milling Ti6Al4V 
Cutting parameters 
and measured 
power 

The indirect evalua-
tion method has been 
applied to determine 
the cutting force coef-
ficient.  

[10] 

Dynamometer 

5-axis 
CNC 
vertical 
machine 

Milling 
EN AW 
7075 

Milling force coeffi-
cient 

Modeling the cutting 
force under different 
machining conditions. 

[11] 

– ABAQUS Milling 
Al7050-
T7451 
Ti6Al4V 

FEM model cutting 
force coefficients 

An analytical material 
separation model was 
suggested to predict-
ing the cutting force 
for different work-
piece. 

[12] 

Dynamometer, 
microscope 

5-axis 
CNC 
vertical 
machine 

Milling Ti6Al4V 
Cutting force coeffi-
cient 

To estimate the Spe-
cific force coefficient 
(SCF) in high-feed 
milling condition and 
monitoring tool con-
dition. 

[13] 

Dynamometer 
5-axis 
CNC

Milling 6061-Tb51 
Measured cutting 
force, predicted 
cutting force 

High accuracy predic-
tion on cutting force 
by material constitu-
tive model-based.  

[14] 

Dynamometer 
Milling 
machine 

Milling 
EN AW 
6082-T4 

Cutting force sig-
nals 

A force based periph-
eral milling models 
without cutting force 
coefficient.  

[15] 

The effect of tool wear in milling 

Tool wear can be expressed as the loss of material in the 
cutting tool during the formation of a new surface and 
chip formation in machining. Material loss is usually 
slow, but can occasionally be in the form of particles or 
larger pieces. The wear in the cutting tool occurs in dif-
ferent structures depending on the material and struc-
ture of the machined part, the selected machining condi-
tions and the process. As a result, all wear patterns 
change the geometry of the cutting edge. However, this 
change is determined according to the mechanism and 
creates different physical loads on the team. Below the 
literature review of machinability studies made by mill-
ing is presented. 
Cutting parameter optimization with response surface 
methodology (RSM) with improved teaching learning 

based optimization (ITLBO) algorithm has been ad-
dressed by [17]. Li at all. state that cutting force in-
creased by 2.70% and surface roughness decreased by 
49.42%. The manufacturing success  is mainly based on 
appropriate tool conditions [18]. Milling process moni-
toring has a great impact on energy saving, economy and 
increases processing quality. Authors proposed a tool 
condition monitoring method (TCM) for the milling pro-
cess based on using a multisource pattern recognition 
model. The proposed model has been harmonious with 
experimental results. A novel ANFIS-PSO method has 
used to find qualified tool wear prediction model and ob-
tain the best combination of machining parameters with 
prolong tool life [19]. It was claimed that prolong tool life 
could be guaranteed with optimized cutting parameters 
by random vibration and cross particle swarm optimiza-
tion algorithm. Certain tool wear surveillance techniques 
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are a very important perspective for manufacturing sys-
tem success. The tangential force coefficient and flank 
wear correlations have been used to estimate tool wear 
[20]. Tool wear monitoring system is very important to 
evaluate tool wear status during milling operation [21]. 
The energy efficiency machining process can possible via 
physics-based prediction of tool wear timely and accu-
rately [16, 22]. The physics-based machining model in 
Computer numerical control (CNC) measurements of 
cutting force can predict the power consumption. Accel-
erometer and dynamometer are used to gather signals 
from the milling machine. Long-distance milling is too 
hard for multi-tooth milling. Tool wear increases as in-
creasing with longer cutting distance [23]. Authors seen 
that surface roughness was worse quality under long-
distance cutting with lower feed rate relatively. Machin-
ing performance and tool wears on composites have 
been monitored with comparison of dry and LCO2 ma-
chining conditions in [24]. Tool wear has been reduced 
50% with using LCO2 in comparison to dry machining. In 
addition, considering the 1000mm slot length, power 
consumption is reduced by reducing tool-chip friction. A 
comparative analysis of tool wear behaviours were con-
ducted under the dry and cryogenic milling conditions 
[25]. Tool wear is increased by an average of 3% through 
cryogenic and dry machining, while good thermal 

conductivity efficiently supports cooling. The literature 
survey is summarized in Table 2. Below is a literature re-
view for the surface roughness of machinability studies 
by milling. 
Tool wear is an inevitable occurrence during the milling 
process, and it can have a significant impact on the ma-
chining performance, surface quality, and tool life. As the 
tool wears, its geometry changes, resulting in a decrease 
in cutting edge sharpness, an increase in cutting forces, 
and a degradation of surface finish [26].  
The effect of tool wear on milling can be summarized as 
follows: 
✓ Increase in cutting forces: as the cutting edge of the 

tool wears, the cutting forces increase due to a de-
crease in sharpness. This can lead to chatter, vibra-
tion, and poor surface finish [27]. 

✓ Decrease in material removal rate: as the tool wears,
its cutting ability decreases, resulting in a lower ma-
terial removal rate. This can increase machining time 
and decrease productivity

✓ Degradation of surface finish: as the tool wears, the 
surface finish of the workpiece can degrade due to an 
increase in tool deflection, chatter, and vibration [5]. 

✓ Tool life: tool wear reduces the life of the tool, which 
can lead to increased costs due to frequent tool re-
placement [28]. 

Table 2. Literature review of tool wear studies 

Type of sensors Machine 
Pro-
cess 

Workpiece Output parameters Aim Ref. 

Dynamometer, 
surface roughness 
measuring instru-
ment 

CNC 
milling  
machine 

Milling 
EN AW 
7050 

Ra, MRR, SEC,  
cutting parameters 

To obtain a mill-
ing power con-
sumption model 
on account of 
tool wear with 
cutting condi-
tions. 

[17] 

Dynamometer, 
Optical  
Microscope 

CNC Milling CGI 
Tool wear values for 
different cutting  
parameters 

To reduce the 
energy con-
sumption with 
controlling tool 
wear and ma-
chining param-
ters 

[29] 

Dynamometer, 
thermocouple,  
Optical micro-
scope 

CNC high-
speed 

Milling Fiber-glass 

Cutting zone tem-
perature, cutting 
forces under GFRP 
in dry and LCO2cut-
ting conditions 

Machining per-
formance and 
tool wears have 
been monitored 
with compari-
son of dry and 
LCO2 machining 
conditions. 

[24] 

Optical micro-
scope, power 
analyzer, SEM 

CNC Milling Ti-6Al-4V 
Tool wear measure-
ments, SEM EDS 

Tool wear analy-
sis under dry 
and cryogenic 
environment 
conditions.  

[25] 

Optical  
microscope,  
dynamometer 

CNC milling Milling HRC52 

Vibration of the 
workpiece, high-fre-
quency acoustic 
emission signal 

Tool wear were 
monitored using 
different types 
of cutting force 
signal data  

[18] 
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Dynamometer,  
infrared thermal 
imager 

CNC vertical 
machine 

Milling 
Inconel 718 
Steel  

Cutting force, tool 
wear differences 
with cutting pass 

The tool wear 
monitoring 
model have 
been developed 
based on cutting 
force and cut-
ting tempera-
ture 

[20] 

Dynamometer,  
Optical  
microscope 

Vertical mill-
ing  

Milling C45 steel 

Measured tool wear 
after each pass with 
tangential and radial 
force  

The tool flank 
wear has been 
indirectly meas-
ured by corre-
lating to the tan-
gential cutting 
force and cut-
ting parameters. 
Max. error has 
been estimated 
to be 8%. 

[21] 

Dynamometer,  
infrared sensor 

CNC milling 
machine 

Milling 
AISI4340 
steel 

The machine power 
consumption and 
spindle power has 
been measured 

A digital-twin 
model has been 
explored to de-
fining the tool 
wear diagnosis 
with measuring 
the machine 
power. 

[22] 

Dynamometer, 
SEM, Digital  
microscope, focus 
microscope 

CNC vertical 
machine 

Milling 
CFRP com-
posite 

Milling force, SEM 

The machining 
performance has 
been evaluated 
based on tool 
wear 

[23] 

The effect of surface roughness in milling 

During the chip removal process, it is necessary to con-
sider the entrances to the machine and its exits along 
with other important operations included in the ma-
chine. These include the materials of the cutting tool, the 
workpiece material to be machined, and the rigidity of 
the machine. The roughness and precision of the pro-
cessed material surface are important output parame-
ters as they determine the final purpose of the material. 
Achieving precision on machined surfaces in machining 
is always one of the important parameters. The sensitiv-
ity of the surface is the term that encompasses many pa-
rameters, and these can be the finishing of the surface 
and the cleaning of cracks on the surface, thermal dam-
age in the form of chemical change, burning, transfor-
mation and excessive tempering, and permanent tensile 
stress in the workpiece material [6]. The mechanism of 
regenerative excitation of vibrations occurs when the 
chip thickness during machining becomes comparable to 
the cutting edge radius of the tool [30]. This results in a 
phenomenon called "chip segmentation" or "serrated 
chip formation," where the chip is formed in discrete 
segments instead of a continuous chip [31]. As the chip 
thickness becomes smaller, the cutting edge periodically 
comes into and out of contact with the workpiece, caus-
ing the cutting forces to fluctuate. These fluctuations can 
cause the cutting tool to vibrate and can lead to the gen-
eration of regenerative chatter vibrations. A variable cut-
ting speed can have a significant impact on the genera-
tion of regenerative vibrations. If the cutting speed is too 

low, the cutting forces may become unsteady, resulting 
in increased vibration amplitudes. On the other hand, if 
the cutting speed is too high, the chip thickness may be-
come too small, leading to chip segmentation and the on-
set of regenerative chatter vibrations [32]. Regenerative 
vibrations can have a significant impact on the mechani-
cal properties of the machined surface. The vibrations 
can cause plastic deformation of the material, resulting 
in the formation of surface defects such as chatter marks, 
waviness, and roughness. These defects can lead to re-
duced fatigue life, decreased wear resistance, and re-
duced dimensional accuracy of the machined surface 
quality [33]. 
The specific parameters recommended for measuring 
surface roughness can vary depending on the type of sur-
face being measured and the intended application [5]. 
However, some commonly used parameters for charac-
terizing surface roughness include [34]: 
i. Ra (arithmetical mean roughness): the arithmetic av-

erage of the surface heights and depths within a 
measurement length.

ii. Rz (maximum height roughness): the distance be-
tween the highest peak and lowest valley within a 
measurement length.

iii. Rq (root mean square roughness): the square root of 
the mean of the squared heights and depths of the 
surface within a measurement length.

iv. Rt (total roughness): the distance between the high-
est peak and the lowest valley over the entire meas-
urement length. 
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v. Rp (peak-to-valley height): the distance between the 
highest peak and lowest valley within a single meas-
urement. 

It is important to note that different parameters may be 
more appropriate for different applications, and some 
parameters may be more useful than others depending 
on the specific properties of the surface being measured. 
The surface roughness and profile are two main param-
eters for mechanical products. The good surface finish 
has great importance for the manufactured products. 
Generally, the researchers propose models that simulate 
the conditions during machining to overcome the prob-
lems of selecting conservative process parameters that 
do not guarantee the achievement of the desired surface 
finish or attain high metal removal rate [5]. These mod-
els establish the relationship between various factors 
and desired product characteristics, allowing for a more 
precise prediction of the outcome of the machining pro-
cess. 
With the advances of computer-controlled machine 
tools, there is a need for even more precise predictive 
models. These models can take into account a wide range 
of parameters, such as cutting speed, feed rate, depth of 
cut, tool geometry, and workpiece material properties, 
and simulate the machining process in a virtual environ-
ment. This allows for the optimization of machining pa-
rameters and the prediction of the surface finish and ma-
terial removal rate, without the need for expensive trial-
and-error experiments. Finite element method (FEM) is 
another important analysis method to evaluate the mill-
ing parameters [35, 36]. FEM involves simulating the 
machining process using complex mathematical models 
to predict the deformation and stress distribution in the 
workpiece and the tool. Analytical models use mathe-
matical equations to predict the surface finish and tool 
wear, while empirical models are based on experimental 
data and use statistical methods to establish the relation-
ship between process parameters and product charac-
teristics. This method has enabled us to predict surface 
roughness instead of directly measuring from the values 
of cutting force. An experimental study was conducted to 
verify FEM analysis cutting force predicted by Jinge et al. 
[37]. They found that the analyses made were quite com-
patible with the experimental research. A deformation 
prediction FEM model accomplished under chip 

removed condition by Xi et al. [38]. Also, they performed 
an experimental study to verify the precision of the FEM 
model. An experimental study was conducted by Yadav 
et al. to optimize the cutting parameters in CNC milling 
via Taguchi method [39]. Analyses were conducted un-
der boundary conditions such as cut and tool dimen-
sions, cutting force, speed and superficial level hardness. 
A comprehensive review research is made by Meher et 
al. on CNC milling process with cutting conditions and 
environments [40]. The accurate prediction of surface 
roughness with the hybrid kernel method was proposed 
by Cheng et al.  [41]. They have conducted the milling ex-
periments to verify the prediction model under different 
cutting parameters and tool wear combinations. Conse-
quently, they observed that the accuracy of hybrid kernel 
prediction models is higher than other prediction mod-
els, vector regression, Gaussian process regression. Chan 
et al performed to structural performance analysis and 
experimental verification to surface roughness in ma-
chining. A finite-element analysis method was used to 
determine the dynamic and static properties of the ma-
chine. Also, five-axis machine-tool cutting process was 
accomplished experimentally. Hence results showed 
that the surface roughness of the workpiece could be 
predicted very closely via AIM neural network predic-
tion model [42]. Monitoring and estimating the surface 
quality during machining of workpieces that require 
high precision, especially used in the aerospace industry, 
is an important issue. A literature survey was done on 
online continuous tool wear monitoring for machining 
processes by Manivannan et al. [43]. The monitoring 
models determined by a cutting parameter often fail in 
different applications. For this reason an online monitor-
ing milling model was suggested by Wang et al. to pre-
diction on high value products [44]. A comprehensive re-
view on empirical prediction of surface roughness was 
done by Deshpande et al. [45]. Li et al. performed the 
spindle speeds optimization study mainly based on cut-
ting depth, cutting width parameters. Back propagation 
neural network (BPNN) regression model was used in 
optimization work. As a result an economical machining 
process has been recommended [46]. Perard et al. eval-
uated the milling cutters axial run out, teeth number and 
tilt angle sensitive have been characterized with surface 
roughness and residual stress [47]. The 

literature survey is summarized in Table 3. 
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Table 3. Literature review of surface roughness studies 

It is important to note that different parameters may be 
more appropriate for different surface roughness deter-
mining applications, and some parameters may be more 
useful than others depending on the specific properties 
of the surface being measured. It's always a good idea to 
consult with experts in the field or consult relevant liter-
ature for guidance on the most appropriate parameters 
for a given application.  
Surface roughness is main parameter on sustainability of 
milling in machining process. Surface roughness may be 
improved but energy consumption is increased, the en-
vironmental impact generated from power production is 
raised [51]. Also this may lead to more machining time 
and operation. Surface roughness is decisive parameter 
on sustainability performance of milling process [52]. 
Taguchi statistical method of design of experiments is 
generally prefered to determine the optimum parameter 
as seen in Table 3. Taguchi method provides to deter-
mine the optimum cutting parameters more efficiency 
and economically with minimum variation [53]. 

Fig. 2. The sensors used in the milling operations 

Type of sensors 
Machining 
operations 

Process Workpiece 
Output  

parameters 
Aim Ref. 

Dynamometer, 
Optical  
microscope, 

5-axis CNC 
machining 
center 

Milling Haynes 230 
Surface 
roughness 

Monitoring tool wear input values 
used to predict the surface roughness 

[41] 

Load cell, sensor 
probe, displace-
ment display me-
ter, accelerome-
ter, surface 
roughness meter, 
tool microscope 

5-axis CNC 
vertical 
machine 

Milling Al-6061 

Surface 
roughness 
measur-
ments, Ra,  

The surface roughness has been as-
sessed under the trend of machine 
vibration condition 

[42] 

Microscope, 
surface  
roughness tester 

CNC milling 
machine 

Milling Ti6Al4V 

Tool wear 
value (VB), 
Surface 
roughness 
(Ra) 

On-Line surface roughness predic-
tion with integrating tool wear and 
cutting parameters various  

[44] 

Dynamometer, 
CMM  

5-axis CNC 
machining 
center 

Milling SS-Grade420 

CMM  
machine 
measures of 
surface 
roughness  

26.2% reduction in surface rough-
ness was observed with optimized 
virtual machining parameters. 

[48] 

Power meter, 
surface  
roughness tester 

CNC  
machining 
center 

Milling Al3003 
Measured of 
surface 
roughness  

Surface roughness and energy saving 
machining have been proposed with 
machining parameters such; spindle 
11,368.8333r/min, feed speed 
3.7232m/min cutting with 
0.3442mm and cutting depth 
0.4846mm 

[49] 

Surface  
roughness tester  

CNC vertical 
machine 

Milling Al6061-T6 

Surface 
roughness 
measure-
ments with 
coated and 
uncoated 
carbide tool 

Machining parameters effects are in-
vestigated on surface roughness by 
Taguchi's method.  

[50] 

Surface  
roughness tester 

CNC  
machhining 
center 

Milling Ti-6Al-4V 
Surface 
roughness 

Taguchi method have been used to 
obtain the optimum surface rough-
ness quality  

[39] 

Dynamometer, 
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microscope  

CNC  
verticalma-
chine 

Milling 
15-5PH mar-
tensitic Stain-
less steel 

Surface 
roughness 
parameters 
(Ra), resid-
ual stress 

Milling cutters axial runout, teeth 
number and tilt angle sensitive's 
have been characterized with surface 
roughness and residual stress. 

[47] 
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Conclusions 

Once the cutting process starts, the interaction between 
cutting tool and workpiece can produce different formed 
chips which play determinative role on the cutting mech-
anism and cutting variables. Therefore, the arrangement 
of the contact conditions determines the quality of the 
machining dynamics and machining outputs such as sur-
face roughness, tool wear and cutting forces. The sensors 
generally used for machinability output parameters are 
given in Figure 2. A mathematical model of the machined 
surface can be used to predict the quality of machining 
by considering the cutting conditions and the level of vi-
brations. The model typically takes into account the fol-
lowing factors: 
Cutting forces: The forces that act on the cutting tool dur-
ing machining can be measured and used to predict the 
surface roughness. Higher cutting forces can lead to in-
creased surface roughness. 
Tool wear: As the cutting tool wears down, the surface 
roughness can become increasingly irregular. A model 
that takes into account the rate of tool wear can help pre-
dict the final surface quality. 
Cutting speed: The speed at which the cutting tool moves 
across the workpiece can affect the quality of the ma-
chined surface. Higher cutting speeds can lead to in-
creased surface roughness. 
Vibration level: Vibrations can cause the cutting tool to 
chatter, resulting in uneven cuts and increased surface 
roughness. A model that takes into account the level of 
vibrations can help predict the final surface quality. 
Material properties: The material being machined can af-
fect the quality of the final surface. A model that takes 
into account the material properties, such as hardness 
and ductility, can help predict the final surface quality. 
By combining these factors into a mathematical model, it 
is possible to predict the quality of machining for a given 
set of cutting conditions and vibration levels. This can 
help engineers optimize their machining processes to 
achieve the desired level of surface quality. 
The use of predictive models can help to optimize the 
machining process and achieve the desired product 
characteristics, while minimizing the risk of cutter 
breakage and unsatisfactory surface finish. 
The mechanism of regenerative excitation of vibrations 
occurs when the chip thickness during machining be-
comes comparable to the cutting edge radius of the tool. 
The vibrations can cause microstructural changes in the 
material due to cyclic loading. These changes can affect 
the mechanical properties of the surface layer, such as 
hardness, residual stresses, and microstructure. For ex-
ample, the cyclic loading can cause grain refinement or 
coarsening, resulting in changes in the mechanical prop-
erties of the material. Therefore, it is important to care-
fully control the cutting speed to minimize the genera-
tion of regenerative vibrations and to optimize the ma-
chining process to achieve the desired mechanical prop-
erties of the machined surface. 
To mitigate the negative effects of tool wear, several 
strategies can be employed. One approach is to monitor 
the tool wear and adjust the machining parameters, such 
as the cutting speed, feed rate, and depth of cut, to main-
tain optimal cutting conditions. Another approach is to 
use cutting tools with advanced coatings, such as dia-
mond-like carbon (DLC), to improve tool life and perfor-
mance. Additionally, the use of cooling and lubrication 

can reduce the temperature and friction between the 
tool and workpiece, which can help to reduce wear and 
increase tool life. Tool wear is a crucial factor to consider 
in milling, and understanding its effects can help to opti-
mize the machining process, reduce costs, and improve 
surface quality. 
The deductions made from this paper is summarized be-
low: 
• Seemingly, dynamometer is one the most used sen-

sor to investigate the surface roughness in milling 
many types of materials such as Ti alloys, Al alloys, 
stainless steel etc. Monitoring of the cutting force 
changes helps to understand the distortions of the 
surface and the relationship between tool wear index 
allows for the determination of the surface charac-
teristics of the materials. 

• The utilization of the thermal imagers, accelerome-
ters and dynamometers have been widely seen dur-
ing monitoring of the tool wear characteristics. In the 
recent years, Ni alloys, Ti alloys and composites have 
been preferred and utilized for milling operations to 
analyze tool wear. Another important point in here is 
that SEM images have been gained importance to an-
alyze the tool wear mechanisms.

• Cutting force measurements have been used to ana-
lyze the tool wear development in milling of different 
types of materials. Seemingly, especially for hard-to-
cut materials were preferred to analyze in detail 
which can be explained with the reality that dyna-
mometers can reflect the machining mechanism di-
rectly and helps to monitor the changes in tool wear.
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