PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Protection of the Purification Station Thermal Engines Against the Effects of Hydrogen Sulfide by the Coupling of a Chemical and Biological Treatment of the Produced Biogas

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among the various techniques used to reduce hydrogene sulfide in biogaz avoiding harmful effects on engines, the chemical and biological treatment appears particularly promising. The main objective of this article was to develop a new process to reduce the harmful effect of hydrogen sulfide (H2S), contained in the biogas resulting from methanization, on the equipment of the wastewater treatment plant (WWTP) of FES city in particular the two cogeneration units. A multiple regime technique for biogas desulfuration, based on the chemical and biological treatment as well as internal micro-aeration of the digester was developed. Owing to the insights gained from this study, it was identified that reducing the concentration of H2S in biogas and improving methane production (biogas production increased from 3.6 M Nm3 in 2018 to 3.8 M Nm3 in 2019, a saving of about 300,000 MAD); reduction of desulfurization tower downtime from 4 times/year to 1 time/year; increasing operating time of generating sets from 8800 in 2018 to 14 400 h in 2019; electricity production increased from 5.9 GWh in 2018 to 7.2 GWh in 2019. In light of these findings, it can be affirmed that the study successfully achieved its objectives, presenting valuable avenues for future scientific exploration.
Twórcy
  • Energy and Agro-Equipment Department, Training in Rural Engineering, Agronomic and Veterinary Medicine Institute Hassan II, Rabat, B.P 6202, Morrocco
  • Energy and Agro-Equipment Department, Training in Rural Engineering, Agronomic and Veterinary Medicine Institute Hassan II, Rabat, B.P 6202, Morrocco
  • Energy and Agro-Equipment Department, Training in Rural Engineering, Agronomic and Veterinary Medicine Institute Hassan II, Rabat, B.P 6202, Morrocco
  • Energy and Agro-Equipment Department, Training in Rural Engineering, Agronomic and Veterinary Medicine Institute Hassan II, Rabat, B.P 6202, Morrocco
Bibliografia
  • 1. Awe O.W, Zhao Y., Nzihou A., Minh D.P., and Lyczko N. 2017. A review of biogas utilisation, purification and upgrading technologies, Waste and Biomass Valorization, 8(2), pp. 267-283.
  • 2. Aziza L.K.2012. Traitement et valorisation du biogaz, 2, pp. 139-146.
  • 3. Boivin S.2010. Oxydation biologique du sulfure d’hydrogène dans un bioréacteur de digestion anaérobie psychrophile soumis à des conditions micro-aérobies.
  • 4. Botheju D., Lie.B, and Bakke.R.2010. Oxygen effects in anaerobic digestion - II, Model. Identif. Control, 31(2), pp. 55-65.
  • 5. Chang Y.J., Chang Y.T., Hung C.H., Lee J.W., Liao H.M., and Chou H.L.2 014. Microbial community analysis of anaerobic bio-corrosion in different ORP profiles, Int. Biodeterior. Biodegrad., 95(PA), pp. 93-101.
  • 6. Dannesboe C., Hansen J.B, and Johannsen I.2019. Removal of sulfur contaminants from biogas to enable direct catalytic methanation, Biomass Convers. Biorefinery.
  • 7. Díaz I., Ramos I., and Fdz .M-Polanco. 2105. Economic analysis of microaerobic removal of H2 S from biogas in full-scale sludge digesters, Bioresour. Technol., 192, pp. 280-286.
  • 8. Fdz .M-Polanco, Díaz I, Pérez .S. I, Lopes.A. C, and Fdz.F-Polanco.2009. Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: Pilot plant experience, Water Sci. Technol., 60(12), pp. 3045-3050.
  • 9. Ghouali A.2015. Analyse et contrôle optimal d’un bioréacteur de digestion anaérobie.
  • 10. Hajjaji N.2016. Production Du Biogaz Par Digestion Anaerobie: Aspects Production Du Biogaz Par Digestion Anaerobie. Séminaire 2010 l’Ecole Dr. RP2E Ingénierie des Ressources, Procédés, Prod. Environ., Nancy, 28 janvier 2010, Prod., no. December.
  • 11. Id H. A. L. 2015. Epuration fine des biogaz en vue d ’ une valorisation énergétique en pile à combustible de type SOFC: Adsorption de l’octaméthylcyclotétrasiloxane et du sulfure d’hydrogène To cite this version: HAL Id: tel-01149080 Épuration fine des biogaz.
  • 12. Jenicek. P, Celis.C.A, Koubova J., and Pokorna. D.2011. Comparison of microbial activity in anaerobic and microaerobic digesters, Water Sci. Technol., 63(10), pp. 2244-2249.
  • 13. Jeníček P., Horejš J., Pokorná L. -Krayzelová, Bindzar J., and Bartáček J. 2017. Simple biogas desulfurization by microaeration – Full scale experience, Anaerobe, 46, pp. 41-45.
  • 14. Jenicek P, Koubova J., Bindzar J., and Zabranska J. 2010. Advantages of anaerobic digestion of sludge in microaerobic conditions, Water Sci. Technol., 62(2), pp. 427-434.
  • 15. Kapoor R. 2019.Evaluation of biogas upgrading technologies and future perspectives: a review. Environmental Science and Pollution Research.
  • 16. Krayzelova L., Bartacek J., Díaz I., Jeison D., Volcke E.I.P., and Jenicek P. 2015. Microaeration for hydrogen sulfide removal during anaerobic treatment: a review, Rev. Environ. Sci. Biotechnol., 14(4), pp. 703-725.
  • 17. Maizonnasse M., Plante J.S., Oh D., and Laflamme C.B. 2013. Investigation of the degradation of a low cost untreated biogas engine using preheated biogas with phase separation for electric power generation, Renew. Energy, 55, pp. 501-513.
  • 18. Meres M. 2009. Composition of biogas analysis in order to optimize production and harvesting in domestic waster stoc (in French).
  • 19. Nguyen D. and S. Khanal K. 2018. A little breath of fresh air into an anaerobic system: How microaeration facilitates anaerobic digestion process, Biotechnol. Adv., 36(7), pp. 1971-1983.
  • 20. Of N., In E., Of A., In E., and Of N.2010. Assessment of biogas potential hazards 1 ‐ 2, pp. 39-42.
  • 21. Okoro O.V. and Sun Z. 2019. Desulphurisation of Biogas: A Systematic Qualitative and Economic-Based Quantitative Review of Alternative Strategies, ChemEngineering, 3(3), pp. 76.
  • 22. Ramos I. and Fdz-Polanco M. 2014. Microaerobic control of biogas sulphide content during sewage sludge digestion by using biogas production and hydrogen sulphide concentration, Chem. Eng. J., 250, pp. 303-311.
  • 23. Shah D. and Nagarseth P.H. 2015. Low cost biogas purification system for application of bio CNG as fuel for automobile engines, Int. J. Innov. Sci. Eng. Technol., 2(6), pp. 308-312.
  • 24. Szczyrba P. 2020. Analysis of sewage sludge and biogas-energy management at the opole wastewater treatment plant, Ecological Engineering, 21(2), p 26-34.
  • 25. Zhao Q., Leonhardt E., MacConnell C., Frear C., and Chen S.2010. Purification technologies for biogas generated by anaerobic digestion, clim. friendly farming improv, Carbon Footpr. Agric. Pacific Northwest. CSANR Res. Rep. 2010-00, pp. 24.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-272f47c6-e71c-45b1-ab3d-e58e22eebff4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.