PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wykorzystanie technologii GLAD do zastosowań w przenośnych analizatorach oddechu

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
The use of GLAD technology for applications in portable respiratory analyzers
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawione zostały najważniejsze parametry technologii osadzania pod kątem GLAD (ang. Glancing Angle Deposition) z wykorzystaniem magnetronowego rozpylania jonowego w celu wytwarzania półprzewodnikowych, rezystancyjnych czujników gazów przeznaczonych do zastosowania w układach elektronicznego nosa (ang. e-nose) do analizy wydychanego powietrza.
EN
In this paper, the major parameters of the GLAD (Glancing Angle Deposition) technique with the utilization of the magnetron sputtering technology were presented. The GLAD technology was applied to deposition of resistive, semiconductor type gas sensors that will be applied to electronic nose (e-nose) for exhaled breath analysis in a portable device.
Rocznik
Strony
118--120
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Advanced Diagnostic Equipment sp. z o.o.
  • Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Instytut Elektroniki
  • Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Instytut Elektroniki
  • Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Instytut Elektroniki
  • Advanced Diagnostic Equipment sp. z o.o.
  • Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Instytut Elektroniki
autor
  • Advanced Diagnostic Equipment sp. z o.o.
  • Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Instytut Elektroniki
Bibliografia
  • [1] A. Lemanik, “Retinopatia cukrzycowa najczestsza przyczyna utraty wzroku u osób w wieku produkcyjnym,” Optyka, 2020.
  • [2] Y. Saalberg and M. Wolff, “VOC breath biomarkers in lung cancer,” Clin Chim Acta, vol. 459, pp. 5–9, Aug. 2016, doi: 10.1016/J.CCA.2016.05.013.
  • [3] E. Janssens, J. P. van Meerbeeck, and K. Lamote, “Volatile organic compounds in human matrices as lung cancer biomarkers: a systematic review,” Critical Reviews in Oncology/Hematology, vol. 153, p. 103037, Sep. 2020, doi: 10.1016/J.CRITREVONC.2020.103037.
  • [4] A. Amann et al., “The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva,” J Breath Res, vol. 8, no. 3, Sep. 2014, doi: 10.1088/1752-7155/8/3/034001.
  • [5] T. Saidi et al., “Exhaled breath gas sensing using pristine and functionalized WO3 nanowire sensors enhanced by UV-light irradiation,” Sensors and Actuators B: Chemical, vol. 273, pp. 1719–1729, Nov. 2018, doi: 10.1016/J.SNB.2018.07.098.
  • [6] J. E. Chang et al., “Analysis of volatile organic compounds in exhaled breath for lung cancer diagnosis using a sensor system,” Sensors and Actuators, B: Chemical, vol. 255, pp. 800–807, 2018, doi: 10.1016/J.SNB.2017.08.057.
  • [7] L. Fleming, D. Gibson, S. Song, C. Li, and S. Reid, “Reducing N2O induced cross-talk in a NDIR CO2 gas sensor for breath analysis using multilayer thin film optical interference coatings,” Surface and Coatings Technology, vol. 336, pp. 9–16, Feb. 2018, doi: 10.1016/J.SURFCOAT.2017.09.033.
  • [8] R. Kalidoss, S. Umapathy, and Y. Sivalingam, “An investigation of GO-SnO2-TiO2 ternary nanocomposite for the detection of acetone in diabetes mellitus patient’s breath,” Applied Surface Science, vol. 449, pp. 677–684, Aug. 2018, doi: 10.1016/J.APSUSC.2017.12.090.
  • [9] L. Gao, X. Yang, Y. Shu, X. Chen, and J. Wang, “Ionic liquid-based slab optical waveguide sensor for the detection of ammonia in human breath,” J Colloid Interface Sci, vol. 512, pp. 819–825, Feb. 2018, doi: 10.1016/J.JCIS.2017.10.114.
  • [10] A. Rydosz, “A Negative Correlation Between Blood Glucose and Acetone Measured in Healthy and Type 1 Diabetes Mellitus Patient Breath,” J Diabetes Sci Technol, vol. 9, no. 4, pp. 881–884, Jul. 2015, doi: 10.1177/1932296815572366.
  • [11] G. Gregis et al., “Detection of Lung Cancer Bio-markers in Human Breath Using a Micro-fabricated Air Analyzer,” Materials Today: Proceedings, vol. 2, no. 9, pp. 4664–4670, Jan. 2015, doi: 10.1016/J.MATPR.2015.09.020.
  • [12] J. Jagiello, J. Kenvin, A. Celzard, and V. Fierro, “Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models,” Carbon N Y, vol. 144, pp. 206–215, Apr. 2019, doi: 10.1016/J.CARBON.2018.12.028.
  • [13] S. J. Kim, S. J. Choi, J. S. Jang, H. J. Cho, and I. D. Kim, “Innovative Nanosensor for Disease Diagnosis,” Accounts of Chemical Research, vol. 50, no. 7, pp. 1587–1596, Jul. 2017, doi: 10.1021/ACS.ACCOUNTS.7B00047/SUPPL_FILE/AR7B00047_SI_001.PDF.
  • [14] A. Rydosz, K. Marszałek, G. Putynkowski, “A Novel Approach for Device Dedicated to Non-Invasive Diabetes Control,” Journal of Diabetes and Treatment, 2020, doi: 10.29011/2574-7568.001077.
  • [15] A. Rydosz, K. Dyndał, W. Andrysiewicz, D. Grochala, and K.Marszałek, “GLAD Magnetron Sputtered Ultra-Thin Copper Oxide Films for Gas-Sensing Application,” Coatings 2020, Vol. 10, Page 378, vol. 10, no. 4, p. 378, Apr. 2020, doi: 10.3390/COATINGS10040378.
  • [16] A. Rydosz, K. Dyndał, K. Kollbek, W. Andrysiewicz, M. Sitarz, and K. Marszałek, “Structure and optical properties of the WO3 thin films deposited by the GLAD magnetron sputtering technique,” Vacuum, vol. 177, p. 109378, Jul. 2020, doi: 10.1016/J.VACUUM.2020.109378.
  • [17] J. Bronicki, D. Grochala, and A. Rydosz, “Developing GLAD Parameters to Control the Deposition of Nanostructured Thin Film,” Sensors 2022, Vol. 22, Page 651, vol. 22, no. 2, p. 651, Jan. 2022, doi: 10.3390/S22020651.
  • [18] S. D. Han et al., “Versatile approaches to tune a nanocolumnar structure for optimized electrical properties of In2O3 based gas sensor,” Sensors and Actuators B: Chemical, vol. 248, pp. 894–901, Sep. 2017, doi: 10.1016/J.SNB.2017.01.108.
  • [19] P. Luo, M. Xie, J. Luo, H. Kan, and Q. Wei, “Nitric oxide sensors using nanospiral ZnO thin film deposited by GLAD for application to exhaled human breath,” RSC Advances, vol. 10, no. 25, pp. 14877–14884, Apr. 2020, doi: 10.1039/D0RA00488J.
  • [20] G. Lei et al., “Thin films of tungsten oxide materials for advanced gas sensors,” Sensors and Actuators B: Chemical, vol. 341, p. 129996, Aug. 2021, doi:10.1016/J.SNB.2021.129996.
  • [21] Rydosz, A., “Nanosensors for exhaled breath monitoring as a possible tool for noninvasive diabetes detection,” Nanosensors for Smart Cities, 2020, pp. 467-481. Elsevier.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-272ba782-bb4d-4a09-bcb7-42366c088eeb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.