Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
Free Electrons Laser Applications in Infrared and THz Studies of New States of Matter - TERFEL : International Conference 2022 (5-8 July, 2022 ; Warszawa, Poland)
Języki publikacji
Abstrakty
This paper reports on compact CMOS-based electronic sources and detectors developed for the terahertz frequency range. It was demonstrated that with the achievable noise-equivalent power levels in a few tens of pW/√Hz and the emitted power in the range of 100 μW, one can build effective quasi-optical emitter-detector pairs operating in the 200–266 GHz range with the input power-related signal-to-noise ratio reaching 70 dB for 1 Hz-equivalent noise bandwidth. The applicability of these compact devices for a variety of applications including imaging, spectroscopy or wireless communication links was also demonstrated.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e144599
Opis fizyczny
Bibliogr. 60 poz., rys., wykr.
Twórcy
autor
- CENTERA, Institute of High Pressure Physics of the Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- NOMATEN Centre of Excellence, National Centre of Nuclear Research, A. Soltana 7, 05-400 Otwock-Świerk, Poland
autor
- CENTERA, Institute of High Pressure Physics of the Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
autor
- Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio Av. 9, LT-10222 Vilnius, Lithuania
- General Jonas Žemaitis Military Academy of Lithuania, Šilo Av. 5A, LT-10322 Vilnius, Lithuania
autor
- CENTERA, Institute of High Pressure Physics of the Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- Łukasiewicz Research Network Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
autor
- Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, D60435 Frankfurt, Germany
autor
- Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, D60435 Frankfurt, Germany
autor
- CENTERA, Institute of High Pressure Physics of the Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
autor
- CENTERA, Institute of High Pressure Physics of the Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio Av. 9, LT-10222 Vilnius, Lithuania
Bibliografia
- [1] Jepsen, P. U., Cooke, D. G. & Koch, M. Terahertz spectroscopy and imaging - Modern techniques and applications. Laser Photon. Rev. 5, 124-166 (2011). https://doi.org/10.1002/LPOR.201000011.
- [2] Kürner, T., Mittleman, D. M. & Nagatsuma, T. Introduction to THz Communications. in THz Communications (eds. Kürner, T., Mittleman, D. M. & Nagatsuma, T.) 1–12 (Springer Science and Business Media Deutschland GmbH, 2022). https://doi.org/10.1007/978-3-030-73738-2_1.
- [3] Crowe, T. W., Porterfield, D. W. & Hesler, J. L. Multiplier-Based Sources of Terahertz Power. in 33rd International Conference on Infrared, Millimeter and Terahertz Waves, IRMMW-THz 1 (IEEE, 2008). https://doi.org/10.1109/ICIMW.2008.4665442.
- [4] Siles, J. V., Cooper, K. B., Lee, C., Lin, R. H., Chattopadhyay, G. & Mehdi, I. A new generation of room-temperature frequency-multiplied sources with up to 10× higher output power in the 160-GHz-1.6-THz range. IEEE Trans. Terahertz Sci. Technol. 8, 596-604 (2018). https://doi.org/10.1109/TTHZ.2018.2876620.
- [5] Pačebutas, V. et al. Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components. Appl. Phys. Lett. 97, 031111 (2010). https://doi.org/10.1063/1.3458826.
- [6] Deninger, A. J., Roggenbuck, A., Schindler, S. & Preu, S. 2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers. J. Infrared Millim. Terahertz Waves 36, 269-277 (2015). https://doi.org/10.1007/s10762-014-0125-5.
- [7] Fernandes, L. O. T. et al. Photometry of THz Radiation Using Golay Cell Detector. in 2011 XXXth URSI General Assembly and Scientific Symposium 1-4 (IEEE, 2011). https://doi.org/10.1109/URSIGASS.2011.6051287.
- [8] Absolute THz Power-Energy Meters. TK Instruments Ltd. (2018). http://www.terahertz.co.uk/tk-instruments/products/absolute-thz-power-energy-meters.
- [9] Judaschke, R. H., Kehrt, M., Kuhlmann, K. & Steiger, A. Linking the power scales of free-space and waveguide-based electromagnetic waves. IEEE Trans. Instrum. Meas. 69, 9056–9061 (2020). https://doi.org/10.1109/TIM.2020.2998311.
- [10] Richards, P. L. Bolometers for infrared and millimeter waves, J. Appl. Phys. 76, 1 (1994). https://doi.org/10.1063/1.357128.
- [11] Valušis, G., Lisauskas, A., Yuan, H., Knap, W. & Roskos, H. G. Roadmap of terahertz imaging 2021. Sensors 21, 4092 (2021). https://doi.org/10.3390/s21124092.
- [12] Han, R. & Afshari, E. A CMOS high-power broadband 260-GHz radiator array for spectroscopy. IEEE J. Solid-State Circuits 48, 3090–3104 (2013). https://doi.org/10.1109/JSSC.2013.2272864.
- [13] Javadi, E. et al. Sensitivity of field-effect transistor-based terahertz detectors. Sensors 21, 2909 (2021). https://doi.org/10.3390/s21092909.
- [14] Hillger, P., Grzyb, J., Jain, R. & Pfeiffer, U. R. Terahertz Imaging and sensing applications with silicon-based technologies. IEEE Trans. Terahertz Sci. Technol. 9, 1-19 (2019). https://doi.org/10.1109/TTHZ.2018.2884852.
- [15] Nellen, S. et al. Experimental comparison of UTC- and PIN-photodiodes for continuous-wave terahertz generation. J. Infrared Millim. Terahertz Waves 41, 343-354 (2020). https://doi.org/10.1007/s10762-019-00638-5.
- [16] Sizov, F. Terahertz radiation detectors: the state-of-the-art Semicond. Sci. Technol. 33, 123001 (2018). https://doi.org/10.1088/1361-6641/aae473.
- [17] Roser, H. P. et al. GaAs Schottky diodes for THz mixing applications. Proc. IEEE. 80, 1827-1841 (1992). https://doi.org/10.1109/5.175258.
- [18] Feiginov, M. Frequency limitations of resonant-tunnelling diodes in Sub-THz and THz oscillators and detectors. J. Infrared Millim. Terahertz Waves 40, 365-394 (2019). https://doi.org/10.1007/s10762-019-00573-5.
- [19] Boppel, S. et al. CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz. IEEE Trans. Microw. Theory Tech. 60, 3834-3843 (2012). https://doi.org/10.1109/SiRF.2012.6160142.
- [20] Zak, A. et al. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene. Nano Lett. 14, 5834-5838 (2014). https://doi.org/10.1021/nl5027309.
- [21] Viti, L. et al. Thermoelectric graphene photodetectors with sub-nanosecond response times at terahertz frequencies. Nanophotonics 10, 89-98 (2020). https://doi.org/10.1515/nanoph-2020-0255.
- [22] Auton, G. et al. Terahertz detection and imaging using graphene ballistic rectifiers. Nano Lett. 17, 7015-7020 (2017). https://doi.org/10.1021/acs.nanolett.7b03625.
- [23] Garg, S. et al. InGaAs self-switching diode-based THz bridge rectifier. Semicond. Sci. Technol. 36, 075017 (2021). https://doi.org/10.1088/1361-6641/ABFFE0.
- [24] Qiu, Q. et al. High sensitivity of room-temperature terahertz photodetector based on silicon. IScience 25, 105217 (2022). https://doi.org/10.1016/J.ISCI.2022.105217.
- [25] Gayduchenko, I. et al. Tunnel field-effect transistors for sensitive terahertz detection. Nat. Commun. 12, 543 (2021). https://doi.org/10.1038/s41467-020-20721-z.
- [26] Dyakonov, M. I. Generation and detection of terahertz radiation by field effect transistors. Comptes Rendus Phys. 11, 413-420 (2010). https://doi.org/10.1016/j.crhy.2010.05.003.
- [27] Knap, W. et al. Field effect transistors for terahertz detection: Physics and first imaging applications. J. Infrared Millim. Terahertz Waves 30, 1319-1337 (2009). https://doi.org/10.1007/s10762-009-9564-9.
- [28] Lisauskas, A. et al. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 105, 114511 (2009). https://doi.org/10.1063/1.3140611.
- [29] Dyakonov, M. & Shur, M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Devices 43, 380-387 (1996). https://doi.org/10.1109/16.485650.
- [30] Ikamas, K. et al. Broadband terahertz power detectors based on 90-nm silicon CMOS transistors with flat responsivity up to 2.2 THz. IEEE Electron Device Lett. 39, 1413-1416 (2018). https://doi.org/10.1109/LED.2018.2859300.
- [31] Bauer, M. et al. High-sensitivity AlGaN/GaN HEMT terahertz detector with integrated broadband bow-tie antenna. IEEE Trans. Terahertz Sci. Technol. 9, 430–444 (2019). https://doi.org/10.1109/TTHZ.2019.2917782
- [32] Zdanevicius, J. et al. Field-effect transistor based detectors for power monitoring of THz quantum cascade lasers. IEEE Trans. Terahertz Sci. Technol. 8, 613–621 (2018). https://doi.org/10.1109/TTHZ.2018.2871360
- [33] Knap, W. et al. Field effect transistors for terahertz imaging. Phys. Status Solidi C 6, 2828-2833 (2009). https://doi.org/10.1002/PSSC.200982562.
- [34] Al Hadi, R. et al. A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS. IEEE J. Solid-State Circuits 47, 2999-3012 (2012). https://doi.org/10.1109/jssc.2012.2217851.
- [35] Ikamas, K., But, D. B. & Lisauskas, A. Homodyne spectroscopy with broadband terahertz power detector based on 90-nm silicon CMOS transistor. Appl. Sci. 11, 412 (2021). https://doi.org/10.3390/app11010412.
- [36] Ikamas, K. et al. Sub-picosecond pulsed THz FET detector characterization in plasmonic detection regime based on autocorrelation technique. Semicond. Sci. Technol. 33, 124013 (2018). https://doi.org/10.1088/1361-6641/AAE905.
- [37] Zagrajek, P. et al. Time resolution and dynamic range of field-effect transistor-based Terahertz detectors. J. Infrared Millim. Terahertz Waves 40, 703-719 (2019). https://doi.org/10.1007/s10762-019-00605-0.
- [38] But, D. B., Javadi, E., Knap, W., Ikamas, K. & Lisauskas, A. Silicon Based Resonant Power Detector for 620 GHz. in 2020 23rd International Microwave and Radar Conference (MIKON) 305-308 (IEEE, 2020). https://doi.org/10.23919/MIKON48703.2020.9253787.
- [39] Fernandes, C. A., Lima, E. B. & Costa, J. R. Dielectric lens antennas. in Handbook of Antenna Technologies (eds. Chen, Z., Liu, D., Nakano, H., Qing, X. & Zwick, T.) 1001-1064 (Springer, 2016). https://doi.org/10.1007/978-981-4560-44-3_40.
- [40] Krysl, A. et al. Control and Optimization of Patch-Antenna-Coupled THz Detector Performance using Superstrate Dielectric and Silicon Lens. in 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) 1-2 (IEEE, 2022). https://doi.org/10.1109/IRMMW-THZ50927.2022.9896100.
- [41] Seok, E. et al. A 410GHz CMOS Push-Push Oscillator with an On-Chip Patch Antenna. in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers 472-629 (IEEE, 2008). https://doi.org/10.1109/ISSCC.2008.4523262.
- [42] Seok, E. et al. Progress and challenges towards terahertz CMOS integrated circuits. IEEE J. Solid-State Circuits 45, 1554-1564 (2010). https://doi.org/10.1109/JSSC.2010.2049793.
- [43] Huang, D. et al. Terahertz CMOS frequency generator using linear superposition technique. IEEE J. Solid-State Circuits 43, 2730-2738 (2008). https://doi.org/10.1109/JSSC.2008.2004868.
- [44] Razavi, B. A 300-GHz fundamental oscillator in 65-nm CMOS technology. IEEE J. Solid-State Circuits 46, 894-903 (2011). https://doi.org/10.1109/JSSC.2011.2108122.
- [45] Grzyb, J., Zhao, Y. & Pfeiffer, U. R. A 288-GHz lens-integrated balanced triple-push source in a 65-nm CMOS technology IEEE J. Solid-State Circuits 48, 1751-1761 (2013). https://doi.org/10.1109/JSSC.2013.2253403.
- [46] But, D. B. et al. Silicon-based all-electronic quasi-optical pairs for THz frequency range. Proc. SPIE 12230, 86-95 (2022). https://doi.org/10.1117/12.2633904.
- [47] Zhao, Y. et al. A 0.56 THz phase-locked frequency synthesizer in 65 nm CMOS technology. IEEE J. Solid-State Circuits 51, 3005-3019 (2016). https://doi.org/10.1109/JSSC.2016.2601614.
- [48] Ikamas, K. et al. All-electronic emitter-detector pairs for 250 GHz in silicon. Sensors 21, 5795 (2021). https://doi.org/10.3390/S21175795.
- [49] Schmid, R. L., Ulusoy, A. C., Zeinolabedinzadeh, S. & Cressler, J. D. A comparison of the degradation in RF performance due to device interconnects in advanced SiGe HBT and CMOS technologies. IEEE Trans. Electron Devices 62, 1803-1810 (2015). https://doi.org/10.1109/TED.2015.2420597.
- [50] Momeni, O. & Afshari, E. High power terahertz and millimeter-wave oscillator design: A systematic approach. IEEE J. Solid-State Circuits 46, 583-597 (2011). https://doi.org/10.1109/JSSC.2011.2104553.
- [51] Tousi, Y. M., Momeni, O. & Afshari, E. A novel CMOS high-power terahertz VCO based on coupled oscillators: Theory and implementation. IEEE J. Solid-State Circuits 47, 3032-3042 (2012). https://doi.org/10.1109/JSSC.2012.2217853.
- [52] Schmalz, K., Wang, R., Borngräber, J., Debski, W., Winkler, W. & Meliani, C.245 GHz SiGe Transmitter With Integrated Antenna and External PLL. in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) 1-3 (IEEE, 2013). https://doi.org/10.1109/MWSYM.2013.6697430.
- [53] Hillger, P., Grzyb, J., Malz, S., Heinemann, B. & Pfeiffer, U. A Lens-Integrated 430 GHz SiGe HBT Source With Up To -6.3 dBm Radiated Power. in 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 160-163 (2017). https://doi.org/10.1109/RFIC.2017.7969042.
- [54] Jain, R., Hillger, P., Ashna, E., Grzyb, J. & Pfeiffer, U. R. A 64-pixel 0.42-THz source soc with spatial modulation diversity for computational imaging. IEEE J. Solid-State Circuits 55, 3281-3293 (2020). https://doi.org/10.1109/JSSC.2020.3018819.
- [55] Hu, Z., Kaynak, M. & Han, R. high-power radiation at 1 Thz in silicon: a fully scalable array using a multi-functional radiating mesh structure. IEEE J. Solid-State Circuits 53, 1313-1327 (2018). https://doi.org/10.1109/JSSC.2017.2786682.
- [56] Hillger, P., Grzyb, J., Jain, R. & Pfeiffer, U. R. Terahertz imaging and sensing applications with silicon-based technologies. IEEE Trans. Terahertz Sci. Technol. 9, 1-19 (2019). https://doi.org/10.1109/TTHZ.2018.2884852.
- [57] Asada, M. & Suzuki, S. Terahertz emitter using resonant-tunneling diode and applications. Sensors 21, 1384 (2021). https://doi.org/10.3390/S21041384.
- [58] Aniel, F. et al. Terahertz Electronic Devices. in: Springer Handbook of Semiconductor Devices. (eds. Rudan, M., Brunetti, R. & Reggiani, S.) 807-849 (Springer, 2023). https://doi.org/10.1007/978-3-030-79827-7_22/COVER.
- [59] Wiecha, M. M. et al. Antenna-coupled field-effect transistors as detectors for terahertz near-field microscopy. Nanoscale Adv. 3, 1717-1724 (2021). https://doi.org/10.1039/D0NA00928H.
- [60] Cesiul, A. et al. Towards wireless data transmission with compact all-electronic THz source and detector system. Lith. J. Phys. 62, 127-137 (2022). https://doi.org/10.3952/PHYSICS.V62I3.4796.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27233c2f-da99-4a86-8157-684d016d6a30