PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compact terahertz devices based on silicon in CMOS and BiCMOS technologies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Free Electrons Laser Applications in Infrared and THz Studies of New States of Matter - TERFEL : International Conference 2022 (5-8 July, 2022 ; Warszawa, Poland)
Języki publikacji
EN
Abstrakty
EN
This paper reports on compact CMOS-based electronic sources and detectors developed for the terahertz frequency range. It was demonstrated that with the achievable noise-equivalent power levels in a few tens of pW/√Hz and the emitted power in the range of 100 μW, one can build effective quasi-optical emitter-detector pairs operating in the 200–266 GHz range with the input power-related signal-to-noise ratio reaching 70 dB for 1 Hz-equivalent noise bandwidth. The applicability of these compact devices for a variety of applications including imaging, spectroscopy or wireless communication links was also demonstrated.
Słowa kluczowe
Rocznik
Strony
art. no. e144599
Opis fizyczny
Bibliogr. 60 poz., rys., wykr.
Twórcy
  • CENTERA, Institute of High Pressure Physics of the Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
  • NOMATEN Centre of Excellence, National Centre of Nuclear Research, A. Soltana 7, 05-400 Otwock-Świerk, Poland
  • CENTERA, Institute of High Pressure Physics of the Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
  • Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio Av. 9, LT-10222 Vilnius, Lithuania
  • General Jonas Žemaitis Military Academy of Lithuania, Šilo Av. 5A, LT-10322 Vilnius, Lithuania
  • CENTERA, Institute of High Pressure Physics of the Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
  • Łukasiewicz Research Network Institute of Microelectronics and Photonics, Al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, D60435 Frankfurt, Germany
  • Institute of Physics, Goethe University Frankfurt, Max-von-Laue-Str. 1, D60435 Frankfurt, Germany
  • CENTERA, Institute of High Pressure Physics of the Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
  • CENTERA, Institute of High Pressure Physics of the Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
  • Institute of Applied Electrodynamics and Telecommunications, Vilnius University, Saulėtekio Av. 9, LT-10222 Vilnius, Lithuania
Bibliografia
  • [1] Jepsen, P. U., Cooke, D. G. & Koch, M. Terahertz spectroscopy and imaging - Modern techniques and applications. Laser Photon. Rev. 5, 124-166 (2011). https://doi.org/10.1002/LPOR.201000011.
  • [2] Kürner, T., Mittleman, D. M. & Nagatsuma, T. Introduction to THz Communications. in THz Communications (eds. Kürner, T., Mittleman, D. M. & Nagatsuma, T.) 1–12 (Springer Science and Business Media Deutschland GmbH, 2022). https://doi.org/10.1007/978-3-030-73738-2_1.
  • [3] Crowe, T. W., Porterfield, D. W. & Hesler, J. L. Multiplier-Based Sources of Terahertz Power. in 33rd International Conference on Infrared, Millimeter and Terahertz Waves, IRMMW-THz 1 (IEEE, 2008). https://doi.org/10.1109/ICIMW.2008.4665442.
  • [4] Siles, J. V., Cooper, K. B., Lee, C., Lin, R. H., Chattopadhyay, G. & Mehdi, I. A new generation of room-temperature frequency-multiplied sources with up to 10× higher output power in the 160-GHz-1.6-THz range. IEEE Trans. Terahertz Sci. Technol. 8, 596-604 (2018). https://doi.org/10.1109/TTHZ.2018.2876620.
  • [5] Pačebutas, V. et al. Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components. Appl. Phys. Lett. 97, 031111 (2010). https://doi.org/10.1063/1.3458826.
  • [6] Deninger, A. J., Roggenbuck, A., Schindler, S. & Preu, S. 2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers. J. Infrared Millim. Terahertz Waves 36, 269-277 (2015). https://doi.org/10.1007/s10762-014-0125-5.
  • [7] Fernandes, L. O. T. et al. Photometry of THz Radiation Using Golay Cell Detector. in 2011 XXXth URSI General Assembly and Scientific Symposium 1-4 (IEEE, 2011). https://doi.org/10.1109/URSIGASS.2011.6051287.
  • [8] Absolute THz Power-Energy Meters. TK Instruments Ltd. (2018). http://www.terahertz.co.uk/tk-instruments/products/absolute-thz-power-energy-meters.
  • [9] Judaschke, R. H., Kehrt, M., Kuhlmann, K. & Steiger, A. Linking the power scales of free-space and waveguide-based electromagnetic waves. IEEE Trans. Instrum. Meas. 69, 9056–9061 (2020). https://doi.org/10.1109/TIM.2020.2998311.
  • [10] Richards, P. L. Bolometers for infrared and millimeter waves, J. Appl. Phys. 76, 1 (1994). https://doi.org/10.1063/1.357128.
  • [11] Valušis, G., Lisauskas, A., Yuan, H., Knap, W. & Roskos, H. G. Roadmap of terahertz imaging 2021. Sensors 21, 4092 (2021). https://doi.org/10.3390/s21124092.
  • [12] Han, R. & Afshari, E. A CMOS high-power broadband 260-GHz radiator array for spectroscopy. IEEE J. Solid-State Circuits 48, 3090–3104 (2013). https://doi.org/10.1109/JSSC.2013.2272864.
  • [13] Javadi, E. et al. Sensitivity of field-effect transistor-based terahertz detectors. Sensors 21, 2909 (2021). https://doi.org/10.3390/s21092909.
  • [14] Hillger, P., Grzyb, J., Jain, R. & Pfeiffer, U. R. Terahertz Imaging and sensing applications with silicon-based technologies. IEEE Trans. Terahertz Sci. Technol. 9, 1-19 (2019). https://doi.org/10.1109/TTHZ.2018.2884852.
  • [15] Nellen, S. et al. Experimental comparison of UTC- and PIN-photodiodes for continuous-wave terahertz generation. J. Infrared Millim. Terahertz Waves 41, 343-354 (2020). https://doi.org/10.1007/s10762-019-00638-5.
  • [16] Sizov, F. Terahertz radiation detectors: the state-of-the-art Semicond. Sci. Technol. 33, 123001 (2018). https://doi.org/10.1088/1361-6641/aae473.
  • [17] Roser, H. P. et al. GaAs Schottky diodes for THz mixing applications. Proc. IEEE. 80, 1827-1841 (1992). https://doi.org/10.1109/5.175258.
  • [18] Feiginov, M. Frequency limitations of resonant-tunnelling diodes in Sub-THz and THz oscillators and detectors. J. Infrared Millim. Terahertz Waves 40, 365-394 (2019). https://doi.org/10.1007/s10762-019-00573-5.
  • [19] Boppel, S. et al. CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz. IEEE Trans. Microw. Theory Tech. 60, 3834-3843 (2012). https://doi.org/10.1109/SiRF.2012.6160142.
  • [20] Zak, A. et al. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene. Nano Lett. 14, 5834-5838 (2014). https://doi.org/10.1021/nl5027309.
  • [21] Viti, L. et al. Thermoelectric graphene photodetectors with sub-nanosecond response times at terahertz frequencies. Nanophotonics 10, 89-98 (2020). https://doi.org/10.1515/nanoph-2020-0255.
  • [22] Auton, G. et al. Terahertz detection and imaging using graphene ballistic rectifiers. Nano Lett. 17, 7015-7020 (2017). https://doi.org/10.1021/acs.nanolett.7b03625.
  • [23] Garg, S. et al. InGaAs self-switching diode-based THz bridge rectifier. Semicond. Sci. Technol. 36, 075017 (2021). https://doi.org/10.1088/1361-6641/ABFFE0.
  • [24] Qiu, Q. et al. High sensitivity of room-temperature terahertz photodetector based on silicon. IScience 25, 105217 (2022). https://doi.org/10.1016/J.ISCI.2022.105217.
  • [25] Gayduchenko, I. et al. Tunnel field-effect transistors for sensitive terahertz detection. Nat. Commun. 12, 543 (2021). https://doi.org/10.1038/s41467-020-20721-z.
  • [26] Dyakonov, M. I. Generation and detection of terahertz radiation by field effect transistors. Comptes Rendus Phys. 11, 413-420 (2010). https://doi.org/10.1016/j.crhy.2010.05.003.
  • [27] Knap, W. et al. Field effect transistors for terahertz detection: Physics and first imaging applications. J. Infrared Millim. Terahertz Waves 30, 1319-1337 (2009). https://doi.org/10.1007/s10762-009-9564-9.
  • [28] Lisauskas, A. et al. Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys. 105, 114511 (2009). https://doi.org/10.1063/1.3140611.
  • [29] Dyakonov, M. & Shur, M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Devices 43, 380-387 (1996). https://doi.org/10.1109/16.485650.
  • [30] Ikamas, K. et al. Broadband terahertz power detectors based on 90-nm silicon CMOS transistors with flat responsivity up to 2.2 THz. IEEE Electron Device Lett. 39, 1413-1416 (2018). https://doi.org/10.1109/LED.2018.2859300.
  • [31] Bauer, M. et al. High-sensitivity AlGaN/GaN HEMT terahertz detector with integrated broadband bow-tie antenna. IEEE Trans. Terahertz Sci. Technol. 9, 430–444 (2019). https://doi.org/10.1109/TTHZ.2019.2917782
  • [32] Zdanevicius, J. et al. Field-effect transistor based detectors for power monitoring of THz quantum cascade lasers. IEEE Trans. Terahertz Sci. Technol. 8, 613–621 (2018). https://doi.org/10.1109/TTHZ.2018.2871360
  • [33] Knap, W. et al. Field effect transistors for terahertz imaging. Phys. Status Solidi C 6, 2828-2833 (2009). https://doi.org/10.1002/PSSC.200982562.
  • [34] Al Hadi, R. et al. A 1 k-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS. IEEE J. Solid-State Circuits 47, 2999-3012 (2012). https://doi.org/10.1109/jssc.2012.2217851.
  • [35] Ikamas, K., But, D. B. & Lisauskas, A. Homodyne spectroscopy with broadband terahertz power detector based on 90-nm silicon CMOS transistor. Appl. Sci. 11, 412 (2021). https://doi.org/10.3390/app11010412.
  • [36] Ikamas, K. et al. Sub-picosecond pulsed THz FET detector characterization in plasmonic detection regime based on autocorrelation technique. Semicond. Sci. Technol. 33, 124013 (2018). https://doi.org/10.1088/1361-6641/AAE905.
  • [37] Zagrajek, P. et al. Time resolution and dynamic range of field-effect transistor-based Terahertz detectors. J. Infrared Millim. Terahertz Waves 40, 703-719 (2019). https://doi.org/10.1007/s10762-019-00605-0.
  • [38] But, D. B., Javadi, E., Knap, W., Ikamas, K. & Lisauskas, A. Silicon Based Resonant Power Detector for 620 GHz. in 2020 23rd International Microwave and Radar Conference (MIKON) 305-308 (IEEE, 2020). https://doi.org/10.23919/MIKON48703.2020.9253787.
  • [39] Fernandes, C. A., Lima, E. B. & Costa, J. R. Dielectric lens antennas. in Handbook of Antenna Technologies (eds. Chen, Z., Liu, D., Nakano, H., Qing, X. & Zwick, T.) 1001-1064 (Springer, 2016). https://doi.org/10.1007/978-981-4560-44-3_40.
  • [40] Krysl, A. et al. Control and Optimization of Patch-Antenna-Coupled THz Detector Performance using Superstrate Dielectric and Silicon Lens. in 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) 1-2 (IEEE, 2022). https://doi.org/10.1109/IRMMW-THZ50927.2022.9896100.
  • [41] Seok, E. et al. A 410GHz CMOS Push-Push Oscillator with an On-Chip Patch Antenna. in 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers 472-629 (IEEE, 2008). https://doi.org/10.1109/ISSCC.2008.4523262.
  • [42] Seok, E. et al. Progress and challenges towards terahertz CMOS integrated circuits. IEEE J. Solid-State Circuits 45, 1554-1564 (2010). https://doi.org/10.1109/JSSC.2010.2049793.
  • [43] Huang, D. et al. Terahertz CMOS frequency generator using linear superposition technique. IEEE J. Solid-State Circuits 43, 2730-2738 (2008). https://doi.org/10.1109/JSSC.2008.2004868.
  • [44] Razavi, B. A 300-GHz fundamental oscillator in 65-nm CMOS technology. IEEE J. Solid-State Circuits 46, 894-903 (2011). https://doi.org/10.1109/JSSC.2011.2108122.
  • [45] Grzyb, J., Zhao, Y. & Pfeiffer, U. R. A 288-GHz lens-integrated balanced triple-push source in a 65-nm CMOS technology IEEE J. Solid-State Circuits 48, 1751-1761 (2013). https://doi.org/10.1109/JSSC.2013.2253403.
  • [46] But, D. B. et al. Silicon-based all-electronic quasi-optical pairs for THz frequency range. Proc. SPIE 12230, 86-95 (2022). https://doi.org/10.1117/12.2633904.
  • [47] Zhao, Y. et al. A 0.56 THz phase-locked frequency synthesizer in 65 nm CMOS technology. IEEE J. Solid-State Circuits 51, 3005-3019 (2016). https://doi.org/10.1109/JSSC.2016.2601614.
  • [48] Ikamas, K. et al. All-electronic emitter-detector pairs for 250 GHz in silicon. Sensors 21, 5795 (2021). https://doi.org/10.3390/S21175795.
  • [49] Schmid, R. L., Ulusoy, A. C., Zeinolabedinzadeh, S. & Cressler, J. D. A comparison of the degradation in RF performance due to device interconnects in advanced SiGe HBT and CMOS technologies. IEEE Trans. Electron Devices 62, 1803-1810 (2015). https://doi.org/10.1109/TED.2015.2420597.
  • [50] Momeni, O. & Afshari, E. High power terahertz and millimeter-wave oscillator design: A systematic approach. IEEE J. Solid-State Circuits 46, 583-597 (2011). https://doi.org/10.1109/JSSC.2011.2104553.
  • [51] Tousi, Y. M., Momeni, O. & Afshari, E. A novel CMOS high-power terahertz VCO based on coupled oscillators: Theory and implementation. IEEE J. Solid-State Circuits 47, 3032-3042 (2012). https://doi.org/10.1109/JSSC.2012.2217853.
  • [52] Schmalz, K., Wang, R., Borngräber, J., Debski, W., Winkler, W. & Meliani, C.245 GHz SiGe Transmitter With Integrated Antenna and External PLL. in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) 1-3 (IEEE, 2013). https://doi.org/10.1109/MWSYM.2013.6697430.
  • [53] Hillger, P., Grzyb, J., Malz, S., Heinemann, B. & Pfeiffer, U. A Lens-Integrated 430 GHz SiGe HBT Source With Up To -6.3 dBm Radiated Power. in 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 160-163 (2017). https://doi.org/10.1109/RFIC.2017.7969042.
  • [54] Jain, R., Hillger, P., Ashna, E., Grzyb, J. & Pfeiffer, U. R. A 64-pixel 0.42-THz source soc with spatial modulation diversity for computational imaging. IEEE J. Solid-State Circuits 55, 3281-3293 (2020). https://doi.org/10.1109/JSSC.2020.3018819.
  • [55] Hu, Z., Kaynak, M. & Han, R. high-power radiation at 1 Thz in silicon: a fully scalable array using a multi-functional radiating mesh structure. IEEE J. Solid-State Circuits 53, 1313-1327 (2018). https://doi.org/10.1109/JSSC.2017.2786682.
  • [56] Hillger, P., Grzyb, J., Jain, R. & Pfeiffer, U. R. Terahertz imaging and sensing applications with silicon-based technologies. IEEE Trans. Terahertz Sci. Technol. 9, 1-19 (2019). https://doi.org/10.1109/TTHZ.2018.2884852.
  • [57] Asada, M. & Suzuki, S. Terahertz emitter using resonant-tunneling diode and applications. Sensors 21, 1384 (2021). https://doi.org/10.3390/S21041384.
  • [58] Aniel, F. et al. Terahertz Electronic Devices. in: Springer Handbook of Semiconductor Devices. (eds. Rudan, M., Brunetti, R. & Reggiani, S.) 807-849 (Springer, 2023). https://doi.org/10.1007/978-3-030-79827-7_22/COVER.
  • [59] Wiecha, M. M. et al. Antenna-coupled field-effect transistors as detectors for terahertz near-field microscopy. Nanoscale Adv. 3, 1717-1724 (2021). https://doi.org/10.1039/D0NA00928H.
  • [60] Cesiul, A. et al. Towards wireless data transmission with compact all-electronic THz source and detector system. Lith. J. Phys. 62, 127-137 (2022). https://doi.org/10.3952/PHYSICS.V62I3.4796.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27233c2f-da99-4a86-8157-684d016d6a30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.