PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The new concept of MIEX® resin dose categories. Swelling effect, reactor steady-state balance, and NOM removal process control

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of powdered adsorbents for water purification has many advantages and one major drawback – lack of regeneration due to difficulty in separating powdered particles. This weakness is attempted to be broken by powdered magnetic adsorbents, in particular magnetic ion exchange resins, used to remove natural organic matter (NOM) from water. In this water treatment process, NOM removal is controlled by the adsorbent content in the reactor (adsorbent dose) and the degree of its saturation. The control over the dose and saturation is done by mutual relations between the regenerated resin stream directed to the reactor and the saturated resin stream received from the reactor. An obstacle in balancing these streams is a variable volume of the adsorbent resulting from its varied swelling, depending on the features of the solution and saturation of the adsorbent. For this reason, it was proposed to distinguish new resin dose and content categories adequate to these changes, the use of which allows full control of both streams. Thus, the reactor feed stream was associated with relative fresh resin content (RRC) and relative fresh resin dose (RRD), which indicate the volume occupied by the regenerated adsorbent in the solution of water during purification. However, the stream received from the reactor was associated with saturated resin content (SRC) and saturated resin dose (SRD), which indicate the volume occupied by saturated adsorbent in the solution of water under treatment. In turn, these two categories of contents/doses are related to the swelling degree (ηSR). Another role was assigned to the third dose category, which is absolute fresh resin dose (ARD), referring to the volume occupied by the regenerated adsorbent in the solution of demineralized water. Thanks to two key features with reference properties (demineralized water, regenerated adsorbent), ARD allows one to transfer laboratory results to practice and to compare the results of various research. The resin loss factor described by the ηLS indicator was also included in this structure.
Rocznik
Strony
91--103
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Environmental Protection Engineering, Chair in Water and Wastewater Treatment Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] BALLARD M.J., ELDRIDGE R.J., BATES S.J., Polymer beads and method for preparation thereof, Patent US 6,171,489 B1, 09 01 2001.
  • [2] CHEN W., LIU Y., LIU C., Preparation and use of magnetic poly(glycidyl methacrylate) resin in drinking water treatment, J. Appl. Polym., 2013, 130 (1), 106–112. DOI: 10.1002/app.39117.
  • [3] LI A., SHUANG C., CHAO L., FUQIANG L., WANG J., ZHOU Q., XUE Y., ZHOU Y., ZHANG M., YANG W., ZHU Z., Magnetic, acrylic strongly basic anion exchange microsphere resin and the manufacturing method thereof, Patent US 9,183,972 B2, 10 11 2015.
  • [4] GIBSON A., GOLUBOVIC S., MIEX Gold resin. Demonstration at Aireys Inlet, Water: J. AWA, 2015, 42 (2), 50–52.
  • [5] ZHOU Q., ZHANG M.C., SHUANG C.D., LI Z.Q., LI A.M., Preparation of a novel magnetic powder resin for the rapid removal of tetracycline in the aquatic environment, China Chem. Lett., 2012, 23 (6), 745–748. DOI: 10.1016/j.cclet.2012.01.039.
  • [6] MA Y., ZHOU Q., LI A., SHUANG C., SHI Q., ZHANG M., Preparation of a novel magnetic microporous adsorbent and its adsorption behavior of p-nitrophenol and chlorotetracycline, J. Hazard. Mater., 2014, 266, 84–93. DOI: 10.1016/j.jhazmat.2013.12.015.
  • [7] OLIVEIRA L.C.A., RIOS R.V.R.A., FABRIS J.D., GARG V., SAPAG K., LAGO R.M., Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water, Carbon, 2002, 40, 2177–2183. DOI: 10.1016/S0008-6223 (02)00076-3.
  • [8] MILLER J.D., MUNOZ G.A., DUYVESTEYN S., Magnetic activated carbon particles for adsorption of solutes from solution, Patent US 8,097,185 B2 17 11 2012.
  • [9] LOMPE K.M., MENARD D., BARBEAU B., Performance of biological magnetic powdered activated carbon for drinking water purification, Water Res., 2016, 96, 42–51. DOI: 10.1016/j.watres.2016.03.040.
  • [10] MA J., LIU C., CHEN K., Magnetic carbon bubble for pollutants removal, Sep. Purif. Technol., 2019, 225, 74–79. DOI: 10.1016/j.seppur.2019.05.038.
  • [11] XIE Y., QIAN D., WU D., MA X., Magnetic halloysite nanotubes/iron oxide composites for the adsorp-tion of dyes, Chem. Eng. J., 2011, 168 (2), 959–963. DOI: 10.1016/j.cej.2011.02.031.
  • [12] LIU Z., WANG X., LUO Z., HUO M., WU J., HUO H., YANG W., Removing of disinfection by-product precursors from surface water by using magnetic graphene oxide, PLOS ONE, 2015, 10 (12), e0143819. DOI: 10.1371/journal.pone.0143819.
  • [13] AO Y., XU J., FU D., SHEN X., YUAN C., A novel magnetically separable composite photocatalyst: Titania- -coated magnetic activated carbon, Sep. Purif. Technol., 2008, 61, 436–441. DOI: 10.1016/j.seppur. 2007.12.007.
  • [14] MA W., DAI J., DAI X., DA Z., YAN Y., Preparation and characterization of chitosan/halloysite magnetic microspheres and their application for removal of tetracycline from an aqueous solution, De-salin. Water Treat., 2016, 57 (9), 4162–4173. DOI: 10.1080/19443994.2014.988653.
  • [15] BOYER T.H., Removal of dissolved organic matter by magnetic ion exchange resin, Curr. Pollut. Rep., 2015, 1 (3), 142–154. DOI: 10.1007/s40726-015-0012-2.
  • [16] LEVCHUK I., RUEDA MÁRQUEZ J.J., SILLANPÄÄ, M., Removal of natural organic matter (NOM) from water by ion exchange. A review, Chemosphere, 2018, 192, 90–104. DOI: 10.1016/j.chemosphere. 2017.10.101.
  • [17] MERGEN M., ZHAO O., RAYMOND M., GIBSON A., Enhanced DOC removal with novel MIEX® resin in high SUVA waters, Proc. IWA Natural Organic Matter Research Conference, Perth, Western Australia, 2013.
  • [18] LÓPEZ-ORTIZ C.M., SENTANA-GADEA I., VARÓ-GALVAÑ P., MAESTRE-PÉREZ S.E., PRATS R.D., Effect of magnetic ion exchange (MIEX®) on removal of emerging organic contaminants, Chemosphere, 2018, 208, 433–440. DOI: 10.1016/j.chemosphere.2018.05.194.
  • [19] JUTAPORN P., ARMSTRONG M.D., CORONELL O., Assessment of C-DBP and N-DBP formation potential and its reduction by MIEX®DOC and MIEX®GOLD resins using fluorescence spectroscopy and par-allel factor analysis, Water Res., 2020, 172, 115460. DOI: 10.1016/j.watres.2019.115460.
  • [20] SOYLUOGLU M., ERSAN M.S., ATEIA M., KARANFIL T., Removal of bromide from natural waters: Bro-mide-selective vs. conventional ion exchange resins, Chemosphere, 2020, 238, 124583. DOI: 10.1016 /j.chemosphere.2019.124583.
  • [21] JUTAPORN P., MUENPHUKHIAW N., PHUNGSAI P., LEUNGPRASERT S., MUSIKAVONG C., Characterization of DBP precursor removal by magnetic ion exchange resin using spectroscopy and high-resolution mass spectrometry, Water Res., 2022, 217, 118435. DOI: 10.1016/j.watres.2022.118435.
  • [22] TAMANNA T., MAHON P.J., HOCKINGS R.K., ALAM H., RAYMOND M., SMITH C., CLARKE C., YU A., Ion exchange MIEX®GOLD resin as a promising sorbent for the removal of PFAS compounds, Appl. Sci., 2023, 13 (10), 6263. DOI: 10.3390/app13106263.
  • [23] NGUYEN H.V., BURSILL D.B., MORRAN J.Y., DRIKAS M., PEARCE V.L., Water treatment process, Patent US 6,669,849 B1 30 12 2003.
  • [24] VERO G.M., RITCHIE C.B., HOLMQUIST A., Method for contacting liquid with ion exchange resin, Patent US 7,785,474 B2, 31 08 2010.
  • [25] Counter current MIEX® treatment for high capacity ion exchange applications, Ixom Watercare Technical Note https://docs.wixstatic.com/ugd/ee7fe1_bb66b99568404857aeef55f0679c248f.pdf (accessed March 19, 2018).
  • [26] CORNELISSEN E.R., BEERENDONK E.F., NEDERLOF M.N., VAN DER HOEK J.P., WESSEL L.P., Fluidized ion exchange (FIX) to control NOM fouling in ultrafiltration, Desalination, 2009, 236, 334–341. DOI: 10.1016/j.desal.2007.10.084.
  • [27] GALJAARD G., KAMP P., Ion exchange process with plug flow conditions and short residence times, Patent WO 2013172710 A1, 21 11 2013.
  • [28] LAVONEN E., BODLUND I., DAHLBERG K., ERIKSSON U., ANDERSSON A., BERTILSSON S., FRÖSEGÅRD C., FRANKE V., GOLOVKO O., AHRENS L., Pilot scale study of drinking water production with suspended ion exchange and a ceramic microfilter membrane, Svenskt Vatten Utveckling, Report No. 2018-07, Bromma, Sweden, 2018 (in Swedish).
  • [29] ANDERSON R.E., Ion-exchange separation, [In:] P.A. Schweitzer (Ed.), Handbook of Separation Tech-niques for Chemical Engineers, 3rd Ed., McGraw-Hill, New York 1996.
  • [30] CHEN J.P., YANG L., NG W.-J., WANG L.K., THONG S.-L., Ion exchange, [In:] L.K. Wang, Y.-T. Hung, N.K. Shammas (Eds.), Handbook of Environmental Engineering, Vol. 4, Advanced Physicochemical Treatment Processes, The Humana Press, Inc., Totowa 2004, 261–292.
  • [31] CLIFFORD D.A., Ion exchange and inorganic adsorption, [In:] F.W. Pontius (Ed.), Water Quality and Treatment. A Handbook of Community Water Supplies, 4th Ed., McGraw-Hill, New York 1990.
  • [32] MOŁCZAN M., Influence of swelling phenomenon on MIEX® ion exchange resin dose accuracy, Ochr. Środ., 2013, 35 (2), 9–13 (in Polish).
  • [33] BOYER T.H., SINGER P.C., A pilot-scale evaluation of magnetic ion exchange treatment for removal of natural organic material and inorganic anions, Water Res., 2006, 40 (15), 2865–2876. DOI: 10.1016 /j.watres.2006.05.022.
  • [34] MOŁCZAN M., Kinetic jar test of the MIEX®DOC process: Description and interpretation of results, Ochr. Środ., 2007, 29 (1), 45–48 (in Polish).
  • [35] QI S., SCHIDEMAN L.C., BOYER T.H., Determining minimum ion exchange resin usage for NOM removal, J. Environ. Eng., 2012, 138 (10), 1058–1066. DOI: 10.1061/ (ASCE)EE.1943-7870.0000569.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-271e0cd4-3adf-4bc4-8eb0-be7c0705c06e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.