PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Partially transient one-dimensional thermal-flow model of a heat exchanger, upwind numerical solution method and experimental verification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Shell and tube heat exchangers are commonly used in a wide range of practical engineering. The key issue in such a system is the heat exchange between the hot and cold working media. An increased cost of production of these devices has forced all manufacturing companies to reduce the total amount of used materials by better optimizing their construction. Numerous studies on the heat exchanger design codes have been carried out, basically focusing on the use of fully time-dependent partial differential equations for mass, momentum, and energy balance. They are very complex and time-consuming, especially when the designers want to have full information in a full 3D system. The paper presents the 1D mathematical model for analysis of the thermal performance of the counter-current heat exchanger comprised of mixed time-dependent and time-independent equations, solved by the upwind numerical solution method, which allows for a reduction in the CPU time for obtaining the proper solution. The comparison of numerical results obtained from an in-house program called Upwind Heat Exchanger Solver written in a Fortran code, with those derived using commercial software package ASPEN, and those obtained experimentally, shows very good agreement in terms of the temperature and pressure distribution predictions. The proposed method for fast designing calculations appears beneficial for other tube shapes and types of heat exchangers.
Rocznik
Strony
63--83
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • HEXONIC Sp. z o.o., Warszawska 50, 82-100 Nowy Dwór Gdański, Poland
Bibliografia
  • [1] Heat Exchangers Market by Type (Shell & Tube, Plate & Frame, Air Cooled), Raw Material (Steel, Copper, Aluminum), Application (Chemical, Energy, HVACR, Food & Beverage, Power Generation, Pulp & Paper), and Region – Global Forecast to 2026. Technical report, Markets and Markets, 2021.
  • [2] Nagle W.M.: Mean temperature differences in multipass heat exchangers. Ind. Eng. Chem. 25(1933), 6, 604–609.
  • [3] Serth R.W., Lestina T.G.: Process Heat Transfer Principles, Applications and Rules of Thumb (2 Edn.). Academic Press Elsevier, Amsterdam 2014.
  • [4] Cartaxo S.J.M., Fernandes F.A.N.: Counter-flow logarithmic mean temperature difference is actually the upper bound: A demonstration. Appl. Therm. Eng. 31(2011), 6–7, 1172–1175.
  • [5] Chen Z., Cheng W., Hu P.: A new optimization method for heat exchanger design. Kung Cheng Je Wu Li Hsueh Pao/J. Eng. Thermophys. 34(2013), 10, 1894–1898.
  • [6] Vinoth Kumar D., Vijayaraghavan S., Thakur P.: Analytical and experimental investigation on heat transfer and flow parameters of multichannel louvered fin cross flow heat exchanger using iterative LMTD and -NTU method. Mater. Today-Proc.52(2022), 1240–1248.
  • [7] Bell K.J.: Final Report of the Cooperative Research Program on Shell and Tube Heat Exchangers. Engineering Experimental Station Bull.: Vol. 5, 1963.
  • [8] Bartoszewicz J., Bogusławski L.: Numerical analysis of the steam flow field in shell and tube heat exchanger. Arch. Thermodyn. 37(2016), 2, 107–120.
  • [9] Aziz A., Rehman S.: Analysis of non-equidistant baffle spacing in a small shell and tube heat exchanger. Arch. Thermodyn. 41(2020), 2, 201–221.
  • [10] Log A.M., Munkejord S.T., Hammer M.: HLLC-type methods for compressible two-phase flow in ducts with discontinuous area changes. Comput. Fluids 227(2021),105023.
  • [11] Helluy P., Hérard J., Mathis H.: A well-balanced approximate Riemann solver for compressible flows in variable cross-section ducts. J. Comput. Appl. Math.236(2012), 7, 1976–1992.
  • [12] The RELAP5 Development Team: RELAP5/MOD3 Code Manual: Code Structure, System Models, and Solution Methods. Prep. for Division of Systems Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission,NUREG/CR-5535 INEL-95/0174, Washington D.C. 1995.
  • [13] Spore J.W., Elson J.S., Jolly-Woodruf S.J., Knight T.D., Lin J.-C., Nelson R.A., Pasamehmetoglu K.Q., Mahaffy J.H., Murray C., Odar F.:TRACM/ Fortran 90 (Version 3.0) Theory Manual. Prep. for Division of Systems Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission, NUREG/CR-6724, 2001.
  • [14] Bilicki Z., Kestin J., Pratt M.M.: A reinterpretation of the results of the moby dick experiments in terms of the nonequilibrium model. ASME J. Fluids Eng. 112(1990), 2, 212–217.
  • [15] Daude F., Galon P.: Simulations of single- and two-phase shock tubes across abrupt changes of area and branched junctions. Nucl. Eng. Des. 365(2020), 110734.
  • [16] Daude F., Galon P.: A finite-volume approach for compressible single- and twophase flows in flexible pipelines with fluid-structure interaction. J. Comput. Phys.362(2018), 375–408.
  • [17] Delchini M.O., Ragusa J.C., Berry R.A.: Simulations of single- and two-phase shock tubes and gravity-driven wave problems with the RELAP-7 nuclear reactor system analysis code. Nucl. Eng. Des. 319(2017), 106–116.
  • [18] Chen J., Chen H., Zhang X.: Implementation and validation of a one-step coupled solution method for the two-fluid model. Nucl. Eng. Des. 348(2019), 56–64.
  • [19] Lopez R., Lecuona A., Nogueira J., Vereda C.: Numerical solution of onedimensional transient, two-phase flows with temporal fully implicit high order schemes: Subcooled boiling in pipes. Nucl. Eng. Des. 313(2017), 319–329.
  • [20] Bilicki Z., Kardaś D., Michaelides E.: Relaxation model for wave phenomena in liquid-vapour bubble flow in channels. ASME J. Fluids Eng. 120(1998), 2, 369–377.
  • [21] Roetzel W., Das S.K.: Hyperbolic axial dispersion model: concept and its application to a plate heat exchanger. Int. J. Heat Mass Tran. 38(1995), 16, 3065–3076.
  • [22] Luo X., Guan X., Li M., Roetzel W.: Dynamic behaviour of one-dimensional flow multistream heat exchangers and their networks. Int. J. Heat Mass Tran. 46(2003),4, 705–715.
  • [23] Roetzel W., Na Ranong C., Fieg G.: New axial dispersion model for heat exchanger design. Heat Mass Transfer 47(2011), 8, 1009–1017.
  • [24] Yin J., Jensen M.K.: Analytic model for transient heat exchanger response. Int. J. Heat Mass Tran. 46(2003), 17, 3255–3264.
  • [25] Malinowski L., Bielski S.: An analytical method for calculation of transient temperature field in the counter-flow heat exchangers. Int. Commun. Heat Mass 31(2004), 5, 683–691.
  • [26] Ansari M.R., Mortazavi V.: Simulation of dynamical response of a countercurrent heat exchanger to inlet temperature or mass flow rate change. Appl. Therm. Eng. 26(2006), 17–18, 2401–2408.
  • [27] Puzyrewski R., Sawicki J.: Basics of Fluids Mechanics and Hydraulics. PWN, Warszawa 2000 (in Polish).
  • [28] Genić S., Arandjelović I., Kolendić P., Jarić M., Budimir N., Genić V.: A review of explicit approximations of Colebrook’s equation. FME Trans. 39(2011), 2, 67–71.
  • [29] Hobler T.: Heat Transfer and Heat Exchangers (6th Edn.). PWN, Warszawa 1986 (in Polish).
  • [30] Rup K.: Calculation of the heat power of a tube heat exchanger. Arch. Thermodyn. 43(2022), 1, 127–140.
  • [31] Aspen Technology, Inc. Aspen Exchanger Design & Rating. https://www.aspentech.com/en/products/engineering/aspen-exchanger-designand-rating (accessed 5 March 2022).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-271905b6-0211-415a-85dc-d19a2f89040c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.