PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Experimental and numerical investigations and optimisation of grain-oriented silicon steel mechanical cutting process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The process of mechanical cutting of magnetic materials has many advantages in the form of high efficiency with reduced process costs in relation to other cutting technologies; no thermal stresses in the material, which significantly deteriorate the magnetic properties; or the possibility of shaping materials taking into account long cutting lines. In industrial practice, it is very difficult to ensure appropriate conditions for the cutting process and its proper control. Currently, there are no data on the selection of technological parameters of the mechanical shear slitting process of grain-oriented silicon steel in terms of the obtained cutting surface quality and the obtained magnetic properties of the workpiece. The article presents the possibilities of forecasting the characteristic features of the cut edge and selected magnetic properties of grain-oriented silicon steel. For this purpose, proprietary numerical models using FEA (Finite Element Analysis) were used. Then, experimental studies were carried out, and the optimisation task was developed. The developed results enable the correct selection of technological parameters of the process, ensuring the appropriate quality of the cut edge of steel and minimal interference with the magnetic properties.
Rocznik
Strony
292--300
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Koszalin University of Technology, ul. Racławicka 15-17, 75-620 Koszalin, Poland
  • Faculty of Mechanical Engineering, Koszalin University of Technology, ul. Racławicka 15-17, 75-620 Koszalin, Poland
  • Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology
Bibliografia
  • 1. Siebert R, Schneider J, Beyer E. Laser cutting and mechanical cutting of electrical steels and its effect on the magnetic properties, Mag, IEEE Transs on. 2014; 50: 1–4. Available from: https://ieeexplore.ieee.org/document/6798045
  • 2. Slota J, Kaščák L, Kut S. FEM Modeling of shear cutting of electrical steel sheets under various technological conditions. Acta Mech Slo2018; 22 (4): 24–30. Available from: https://www.actamechanica.sk/pdfs/ams/2018/04/04.pdf
  • 3. Ghadbeigi H, Al-Rubaye A, Robinson F.C.J, et al., Blanking induced damage in thin 3.2% silicon steel sheets. Prod Eng. 2020; 14: 53– 64.
  • 4. Weiss H. A, Leuning N, Steentjes S, et al., Influence of shear cutting parameters on the electromagnetic properties of non-oriented electri-cal steel sheets. Jl of Magn and Mag Mat 2017; 421: 250–259. Available from: https://www.sciencedirect.com/science/article/abs/pii/S030488531631294X
  • 5. Zhao Z, Song R, Wang Y, Wang Y, Hu Ch, Zhang Y. Slanted blades optimizing grain texture and work hardening of non-oriented electrical steel in stress coverages during shearing and blanking processes. Steel Res Int 2021; 92, 2100233, 1-7.
  • 6. Paltanea G, Manescu V, Nemoianu I.V, Gavrila H, Andrei P.C. Influence of cutting technologies on the magnetic anisotropy of grain oriented electrical steel. In 2017 Electric Vehicles Int Conf, EV 2017, volume 2017-Janua, pages 1–4, 2017.
  • 7. Hofmann M, Naumoski H, Herr U, Herzog H.-G. Magnetic properties of electrical steel sheets in respect of cutting: Micromagnetic analysis and macromagnetic modeling. IEEE Trans on Mag2016; 52, 1–14. Available from: https://ieeexplore.ieee.org/document/7286823
  • 8. Moses A.J. Energy efficient electrical steels: magnetic performance prediction and optimization. Scri Mat 2012; 67 (6), 560–565. Availa-ble from: https://www.sciencedirect.com/science/article/abs/pii/S1359646212001297
  • 9. Naumoski H, Riedmüller B, Minkow A. Herr U. Investigation of the influence of different cutting procedures on the global and local mag-netic properties of non-oriented electrical steel. J of Magn and Mag Mat 2015; 392, 126–133. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0304885315301554
  • 10. Lewis N, Anderson P, Hall J, Gao Y. Power loss models in punched non-oriented electrical steel rings. IEEE Trans on Mag. 2016; 52(5), 1–4. Available from: https://ieeexplore.ieee.org/document/7428928
  • 11. Kuo S.K, Lee W.C, Lin S.Y, Lu C.Y. The influence of cutting edge deformations on magnetic performance degradation of electrical steel. 2014 17th Int Conf on Electrl Mach and Systems (ICEMS), 2014; 3041-3046.
  • 12. LoBue M. Sasso C. Basso V. Fiorillo F. Bertotti G. Power losses and magnetization process in Fe–Si non-oriented steels under tensile and compressive stress. J of Magn and Mag Mat 2000; 215–216, 124–126. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0304885300000925
  • 13. Boehm L, Hartmann C, Gilch I, Stoecker A, Kawalla R, Wei X, Hirt G, Heller M, Korte-Kerzel S, Leuning N, et al. Grain size influence on the magnetic property deterioration of blanked non-oriented electrical steels. Materials 2021, 14, 7055. Available from: https://www.mdpi.com/1996-1944/14/22/7055
  • 14. Wang X, Wang Z, Cui R, Li Sh. Influence of blanking process on the magnetic properties of non-oriented electrical steel lamination. J of Shanghai Jiao Tong University. 2019; 53(9), 1115-1121.
  • 15. Wang N, Golovashchenko S.F. Mechanism of fracture of aluminum blanks subjected to stretching along the sheared edge. J of Mat Proc Tech 2016; 233, 142–160. Available from:https://www.sciencedirect.com/science/article/abs/pii/S0924013616300553
  • 16. Cao H, Hao L, Yi J, Zhang X, Luo Z, Chen Sh, et al., The influence of punching process on residual stress and magnetic domain structure of non-oriented silicon steel. Jof Magn and Mag Mat 2016; 406, 42–47. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0304885315309586
  • 17. Bayraktar Ş, Turgut Y. Effects of different cutting methods for electri-cal steel sheets on performance of induction motors. Procof the Institution of Mech Eng, Part B: J of Eng Man 2018; 232 (7), 1287–1294.
  • 18. Dems M, Komeza K, Kubiak W, Szulakowski J. Impact of core sheet cutting method on parameters of induction motors. Energies. 2020; 13 (8), 1960. Available from: https://www.mdpi.com/1996-1073/13/8/1960
  • 19. Vandenbossche L, Jacobs S, Henrotte F, Hameyer K. Impact of cut edges in magnetization curves and iron losses in e-machines for au-tomotive traction, in Proc of 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symp & Exhibition, EVS, (Schenzhen, China), No-vember 2010.
  • 20. Hirsch M, Demmel P, Golle R, Hoffmann H. Light metal in high-speed stamping tools, Key Eng Mat2001; 473, 259–266.
  • 21. Harstick H.M.S, Ritter M, Plath A, Riehemann W. EBSD Investiga-tions on cutting edges of non-oriented electrical steel. Met, Micr and Analysis. 2014; 3 (4), 244–251.
  • 22. Kałduński P, Kukiełka L. The numerical analysis of the influence of the blankholder force and the friction coefficient on the value of the drawing force, PAMM. 2007; 7 (1), 4010045-4010046. Available from:https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.200701059
  • 23. Kukiełka L. Podstawy Badań Inżynierskich; Politechnika Koszalińska: Koszalin, Poland; PWN: Warszawa, Poland, 2002. (In Polish)
  • 24. Bohdal L. Application of a SPH coupled FEM method for simulation of trimming of aluminum autobody sheet. Acta Mech et Aut. 2016; 10(1), 56–61.
  • 25. Chodor J, Kukielka L. Using nonlinear contact mechanics in process of tool edge movement on deformable body to analysis of cutting and sliding burnishing processes, App Mech and Mat 2014; 474, 339–344.
  • 26. Johnson G.R, Cook W.H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. 7th International Symposium on Ballistics, The Hague, The Netherlands. 1983; 541–548.
  • 27. Bohdal Ł. Teoretyczne i doświadczalne podstawy optymalizacji procesów cięcia mechanicznego stopów metali lekkich i stali elektrotechnicznych. Monografia Wydziału Mechanicznego nr 344, Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin. 2018. ISSN 0239-7129, ISBN 978-83-7365-7481-5 (In polish).
  • 28. Alatawneh A, Saleem A, Rahman T, Lowther D.A, Chromik R. Model-ling and analysis of the effects of cutting of core laminations in elec-tric machines, IET Electric Power Appl 2020; 14 (12), 2355–2361. Available from: https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-epa.2020.0218
  • 29. Bratus V, Kosel F, Kovac M, Hidria. Determination of optimal cutting edge geometry on a stamped orthotropic circular electrical steel sheet, J of Mat Proc Tech 2005; 210 (2), 396-407. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0924013609003616
  • 30. Demir A, Ocak O, Ulu Y. Impact of lamination processing methods on performance of permanent magnet synchronous motors. In: Int conf on electr mach (ICEM), Berlin, 2–5 September 2014, 1218–1223.
  • 31. Hilditch T.B, Hodgson P.D. Development of the sheared edge in the trimming of steel and light metal sheet, Part 1 - Experimental observations. J of Mat Proc Tech. 2005; 169, 184–191. Available from: https://www.sciencedirect.com/science/article/abs/pii/ S0924013605004620
  • 32. Hilditch T.B, Hodgson P.D. Development of the sheared edge in the trimming of steel and light metal sheet, Part 2 - Mechanisms and modeling. J of Mat Proc Tech 2005; 169, 192–198. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0924013605004632
  • 33. Klimczyk PK, Anderson P, Moses A. Influence of cutting techniques on magnetostriction under stress of grain oriented electrical steel. IEEE Trans on Mag 2012; 48, 1417–1420. Available from: https://ieeexplore.ieee.org/document/6172341
  • 34. Kukielka L. Nonlinear modeling for elasto/visco – plastic contact problem in technological processes, International Scientific IFNA – ANS Journal, Problems of non – linear Analysis in Engineering Sys-tems (2) (2004) 39-53.
  • 35. Kurosaki Y, Mogi H, Fujii H. Importance of punching and workability in non-oriented electrical steel sheets. J of Magn and Mag Mat 2008; 320, 2474–2480. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0304885308003879
  • 36. Manescu V, Paltanea G, Gavrila H. Some important effects of the water jet and laser cutting methods on the magnetic properties of the non-oriented silicon iron sheets. In: 9th intsymp on adv topics in electr eng (ATEE), Bucharest, Romania, 7–9 May 2015, pp.7–9.
  • 37. Pulnikov A, Baudouin P, Melkebeek J. Induced stresses due to the mechanical cutting of non-oriented electrical steels. J of Magn and Mag Materials. 2003; 254–255, 355–357. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0304885302008533
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-270dd02c-232e-4d75-aeff-1f10042f15d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.