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Abstract. In the paper the mathematical and numerical descriptions of the general case of 

thermal contact between two flat bodies are presented. The numerical model of the problem 

is based on the Finite Element Method (FEM). Variable width of the contact gap between 

interacting bodies is considered. The model allows the use of independent spatial discretiza-

tion of the contacting components, which means that the edges of the finite elements lying 

on the both sides of the contact gap need not be matched. The algorithm of treatment 

of the fourth kind boundary condition is described in details. 
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1. Introduction 

Machine parts that work together are in mechanical and thermal contact. 

Mechanical contact is connected with the direct interaction of the surfaces of work-

ing elements. Thermal contact does not require direct contact because the heat 

transfer between the elements can be carried out through a gap. The mathematical 

description of the thermal contact is to supplement the heat conduction equation by 

the fourth type of boundary condition, also called the contact condition. One can 

distinguish two variants of this condition describing the so-called perfect contact 

and the contact via a gap, the width of which in the general case can be varied. 

Descriptions of the problem of thermal contact between non-ideal surfaces can be 

found in the literature dating back more than 50 years [1]. The numerical solution 

of transient heat transfer between two semi-infinite flat bodies using the Finite 

Difference Method (FDM) was presented in [2]. Analytical solutions of the prob-

lem using the Fourier series was presented in [3]. Currently the ideal and non-ideal 

thermal contact is the subject of interest of many scientists. Consideration of con-

tact between adjoining areas is required in modelling both the solidification prob-
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lems where the mold is in contact with the casting [4, 5] as well as the problems 

of heat flow in biological tissues [6-8]. Thermal contact can also be used in the 

problems of damage identification [9]. 

2. Mathematical model 

The scheme of the thermal contact between two objects Ω1 and Ω2 that are in 

contact is shown in Figure 1. Each object has the outer edge Γ1 or Γ2 and the inter-

nal edge, which is a contact interface where heat transfer takes place. On the frag- 

ment 0

s
Γ  an ideal contact is assumed, while on the fragment g

s
Γ  interacting bodies 

are separated by a gap of the width h, which contains a thermally conductive mate-

rial such as air, water or oil. The width of the gap can vary along .

g

s
Γ  

 

 

Fig. 1. Scheme of the contact between two flat bodies 

The basis of the mathematical model of the problem is the heat conduction 

equation 
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where T
(i)

 [K] is temperature, λ(i) [J m
–1

 K
–1

 s
–1

] - coefficient of thermal conductiv-

ity, (cρ)(i) [J m
–3

 K
–1

] - heat capacity, x, y [m] - spatial coordinates, t [s] - time, 

i = 1, 2 is the subscripts denoting body 1 or 2. 

The initial condition, supplementing the equation (1), takes the following form 
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where ( )
,

1

init
T  

( )2
init
T  [K] denote known initial temperatures in the regions Ω1, Ω2 

respectively. 

At the outer boundaries the following boundary conditions are assumed 
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where n1, n2 are the directions of vectors normal to the boundaries Γ1 and Γ2. 

At the edge 0

s
Γ  the following conditions are assumed [4, 5, 7] 
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At the edge ,
g
sΓ  where the contact gap is located, the following condition must 

be fulfilled [6, 8] 
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where h [m] denotes the width of the gap, λg [J m
–1

 K
–1

 s
–1

] is the coefficient 

of thermal conductivity of the medium in the gap, T
(1)

, T
(2)

 [K] are the current 

temperatures of the bodies 1 and 2 at the contact, while ,

1

s
n  

2

s
n  denote vectors 

normal to the boundary Γ1-2 , Γ2-1 , respectively. 

At this point of the description of the problem, a more detailed discussion of the 

introduction of the contact boundary condition is required. Technically speaking, 

the operation of the modification of the global system of equations is the same as 

in the case of the third kind of boundary condition, where in equation (5), 

the heat transfer coefficient α = λg/h and ambient temperature T∞ = T
(1)

 or T∞ = T
(2)

 

depending on the modified system of equations. In other words, equation (1) is 

solved independently in each of the regions and coefficient α in the gap depends on 

its width and thermal conductivity of the medium, while temperature T∞ is replaced 

by the boundary temperature of the adjacent region. 

3. Numerical model 

The numerical model is derived from the criterion of the method of weighted 

residuals [10] in relation to the equation (1). The weighted residual is set to zero 
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where w = w(x, y) is the weighting function and 
.dxdyd =Ω  
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The order of equation (6) is decreased using Green’s theorem 
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where q [J s
–1 

m
–2

] is the value of heat flux on the external boundaries Γ1 , Γ2 or on 

the internal boundaries ,

0

s
Γ  .

g
sΓ  

Regions Ω1 and Ω2 are meshed independently. Nodes at Γ1-2 can have any loca-

tions relative to nodes on the Γ2-1. In the general case, regions Ω1 and Ω2 may be 

separated by a gap of a curved shape and variable width, filled with a medium 

characterized by the coefficient of thermal conductivity λg. The method of thermal 

contact modeling in terms of "node to node" approach can be found in [11]. 

Because the regions Ω1, Ω2 are separated and the meshes are independent, the 

equation (1) is solved separately with an appropriate thermal coupling according to 

the condition (5). In order to generalize the solution procedure, only the condition 

(5) is used in the model. In the case of perfect contact, when h = 0, the condition 

(5) is used with a very small value of h. Local heat transfer between the regions Ω1, 

Ω2 is achieved by thermal coupling of Γ1-2 and Γ2-1 . The combination of subscripts 

1-2 denotes the direction of heat flux through the contact gap from Ω1 to Ω2 , 

while the combination 2-1 denotes direction from Ω1 to Ω2 . This coupling makes 

the equation (1) nonlinear, thus it is necessary to introduce an additional iterative 

process to achieve high accuracy of numerical calculations. 

Temperature and  derivatives of temperature with respect to time t and spatial 

coordinates x, y are approximated using element shape functions, their spatial 

derivatives and nodal values Tj 
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In order to calculate the spatial derivatives of the shape functions, the following 

formula is used 
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where J is the Jacobian matrix of the transformation between coordinates r, s and x, 

y calculated in the following way 
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where xj, yj denotes nodal coordinates. 

Relations (8) used with the formula (7) makes it possible to obtain local energy 

equation 
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Assuming the following relations 
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where K
(e)

 is the thermal conductivity matrix, M
(e)

 - heat capacity matrix, 

B
(e)

 - right-hand side vector, equation (13) can be written as 

 ( ) ( ) ( ) ( ) ( )eeeee

BTMTK =+
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The operation of aggregation leads to the following global equation 

 BTMKT =+
&  (18) 
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Derivative of the temperature T&  with respect to time is approximated by the 

following linear differential scheme 
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where f is the time level, ∆t [s] means time step between level  f  and  f + 1. 

Using scheme (19) in equation (18) the following expression is obtained 
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After arranging the above equation with respect to the time level, the global 

FEM equation discretized using the implicit Euler method is obtained 
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Fig. 2. Thermal contact between two elements 

For the region Ω1 on the boundary Γ1-2 (Fig. 2) the following condition must be 

satisfied 
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while for the region Ω2 on the Γ2-1 

 
( )

( ) ( )( )12

2

2

2 mm

g

s

m
TT

hn

T
−=

∂

∂
−

λ
λ  (23) 



Modeling of thermal contact through gap with the use of Finite Element Method 151

At the fragment Γ1-2 the position of the central point is calculated and then 

the direction normal to Γ2-1 is estimated to find the local width of the gap and the 

temperature ( )2
m
T  at the fragment Γ2-1. Then the modification of the set of equations 

using condition (24) for region Ω1 is made. The same procedure is carried out 

for the Ω2 . Heat flux at the edge between nodes 1-2 is integrated as follows 
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The first integral on the right side of expression (24) modifies local matrix K
(e)

 

while the second one modifies vector B
(e)

. In an analogous manner, the influence 

of the region Ω1 on the region  Ω2 is considered 
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It should be emphasized that the values of ( )1
m

T , ( )2
m
T  on the opposite sides of the 

gap should be calculated using an additional iterative procedure in each time step 

to achieve desired accuracy. Such an approach extends the time of calculations but 

allows for the economical use of the computer's memory.  

4. Conclusions 

The presented mathematical and numerical models of the thermal contact 

problem enables computer implementation of the in-home solver. The presented 

approach based on the separated meshes allows one to solve complex problems, 

because the current operational memory usage is limited to one mesh. The tem-

perature in the entire region is determined on the basis of an iterative process. 
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