PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy Efficiency Optimization by Spectral Efficiency Maximization in 5G Networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Energy and spectral efficiency are the main challenges in 5th generation of mobile cellular networks. In this paper, we propose an optimization algorithm to optimize the energy efficiency by maximizing the spectral efficiency. Our simulation results show a significant increase in terms of spectral efficiency as well as energy efficiency whenever the mobile user is connected to a low power indoor base station. By applying the proposed algorithm, we show the network performance improvements up to 9 bit/s/Hz in spectral efficiency and 20 Gbit/Joule increase in energy efficiency for the mobile user served by the indoor base station rather than by the outdoor base station.
Rocznik
Strony
497--503
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • University of Prishtina, Faculty of Electrical and Computer Engineering, Prishtina, 10000 Kosovo
autor
  • University of Prishtina, Faculty of Electrical and Computer Engineering, Prishtina, 10000 Kosovo
autor
  • Vienna University of Technology
Bibliografia
  • [1] Ericsson, “Ericsson Mobility Report ,” Ericsson, Tech. Rep., August. 2017.
  • [2] U. F. R. 44, “Mobile traffic forecasts 2010-2020 report,” UMTS Forum, Tech. Rep., Jan. 2011.
  • [3] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 20162021 White Paper,” Ciso, Tech. Rep., March 28. 2017.
  • [4] N. Panwar, S. Sharma, and A. K. Singh, “A survey on 5g: The next generation of mobile communication,” Physical Communication, vol. 18, pp. 64–84, 2016.
  • [5] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What Will 5G Be?” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065–1082, Jun. 2014.
  • [6] Y. Chen, S. Zhang, S. Xu, and G. Y. Li, “Fundamental trade-offs on green wireless networks,” IEEE Communications Magazine, vol. 49, no. 6, 2011.
  • [7] C. Xiong, G. Y. Li, S. Zhang, Y. Chen, and S. Xu, “Energyand spectral-efficiency tradeoff in downlink ofdma networks,” IEEE transactions on wireless communications, vol. 10, no. 11, pp. 3874–3886, 2011.
  • [8] C. He, B. Sheng, P. Zhu, and X. You, “Energy efficiency and spectral efficiency tradeoff in downlink distributed antenna systems,” IEEE Wireless Communications Letters, vol. 1, no. 3, pp. 153–156, 2012.
  • [9] Z. Zhou, M. Dong, K. Ota, J. Wu, and T. Sato, “Energy efficiency and spectral efficiency tradeoff in device-to-device (d2d) communications,” IEEE Wireless Communications Letters, vol. 3, no. 5, pp. 485–488, 2014.
  • [10] R. Q. Hu and Y. Qian, “An energy efficient and spectrum efficient wireless heterogeneous network framework for 5g systems,” IEEE Communications Magazine, vol. 52, no. 5, pp. 94–101, 2014.
  • [11] B. Maloku, B. Krasniqi, and F. Ademaj, “Optimizing the energy efficiency for future 5g networks,” in Systems, Signals and Image Processing (IWSSIP), 2016 International Conference on. IEEE, 2016, pp. 1–5.
  • [12] S. Chatterjee, S. P. Maity, and T. Acharya, “Energy efficient cognitive radio system for joint spectrum sensing and data transmission,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 4, no. 3, pp. 292–300, Sept 2014.
  • [13] M. Dai, H. Y. Kwan, and C. W. Sung, “Linear network coding strategies for the multiple access relay channel with packet erasures,” IEEE Transactions on Wireless Communications, vol. 12, no. 1, pp. 218–227, January 2013.
  • [14] M. Dai, S. Zhang, B. Chen, X. Lin, and H. Wang, “A refined convergence condition for iterative waterfilling algorithm,” IEEE Communications Letters, vol. 18, no. 2, pp. 269–272, February 2014.
  • [15] C. Luo, G. Min, F. R. Yu, M. Chen, L. T. Yang, and V. C. M. Leung, “Energy-efficient distributed relay and power control in cognitive radio cooperative communications,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 11, pp. 2442–2452, November 2013.
  • [16] Y. Shi, L. Zhang, Z. Chen, Y. Gong, and G. Wu, “Optimal power allocation for af full-duplex relay in cognitive radio networks,” in 2013 IEEE Globecom Workshops (GC Wkshps), Dec 2013, pp. 322–327.
  • [17] S. Wang, R. Ruby, V. C. Leung, and Z. Yao, “Energy-efficient power allocation for multi-user single-af-relay underlay cognitive radio networks,” Computer Networks, vol. 103, pp. 115–128, 2016.
  • [18] S. Wang and H. Ji, “Distributed power allocation scheme for multi-relay shared-bandwidth (mrsb) wireless cooperative communication,” IEEE Communications Letters, vol. 16, no. 8, pp. 1263–1265, August 2012.
  • [19] G. Y. Li, Z. Xu, C. Xiong, C. Yang, S. Zhang, Y. Chen, and S. Xu, “Energy-efficient wireless communications: tutorial, survey, and open issues,” IEEE Wireless Communications, vol. 18, no. 6, pp. 28–35, Dec. 2011.
  • [20] B. Krasniqi, M. Wolkerstorfer, C. Mehlf¨uhrer, and C. F. Mecklenbr¨auker, “Sum-rate maximization for multiple users in partial frequency reuse cellular networks,” in GLOBECOM Workshops (GC Wkshps), 2010 IEEE. IEEE, 2010, pp. 814–818.
  • [21] B. Krasniqi., “Partial Frequency Reuse for Long Term Evolution,” Ph.D. dissertation, PhD thesis, E389, Vienna University of Technology, 2011.
  • [22] B. Krasniqi, M. Wolkerstorfer, C. Mehlf¨uhrer, and C. F. Mecklenbräuker, “Sum-rate maximization by bandwidth reallocation for two users in partial frequency reuse cellular networks,” in Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference on. IEEE, 2010, pp. 521–525.
  • [23] T. Berisha, P. Svoboda, S. Ojak, and C. F. Mecklenbräuker, “Cellular Network Quality Improvements for High Speed Train Passengers by on-board Amplify-and-Forward Relays,” in 13th International Symposium on Wireless Communication Systems (ISWCS), Sept 2016, pp. 325–329.
  • [24] T. Berisha, P. Svoboda, S. Ojak, and C. F. Mecklenbräuker, “Seghyper: Segmentation- and Hypothesis based Network Performance Evaluation for High Speed Train users,” in 2017 IEEE International Conference on Communications (ICC), May 2017, pp. 1–6.
  • [25] T. Berisha, P. Svoboda, S. Ojak, and C. F. Mecklenbräuker, “Benchmarking In-Train Coverage Measurements of Mobile Cellular users,” in VTC Fall 2017 - IEEE 86th Vehicular Technology Communications, Sept 2017.
  • [26] T. Berisha, G. Artner, B. Kransiqi, B. Duriqi, M. Mucaj, S. Berisha, P. Svoboda, and C. F. Mecklenbräuker, “Measurement and Analysis of LTE Coverage for Vehicular Use Cases in Live Networks,” in IEEE APWC - APS Topical Conference on Antennas and Propagation in Wireless Communications, Sep 2017.
  • [27] T. S. Rappaport., “5G Channel Measurements and Models for Millimeter-Wave Wireless Communications.” NYU Polytechnic School of Engineering, Brooklyn, New York, North American 5G Workshop, November 2014.
  • [28] ITU-R., “Propagation data and prediction methods for the planning of indoor radiocommunication systems and radio local area networks in the frequency range 900 MHz to 100 GHz,” ITU, Electronic Publication Geneva,, Tech. Rep., 2012.
  • [29] S. Boyd and L. Vandenberghe., Convex Optimization. Cambridge University Press, 2004.
  • [30] H. Turnbull, Theory of Equations, fourth edition. Oliver and Boyd, London, 1974.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2704129b-d464-42d8-88ce-8fe817902837
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.