PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic analysis of the blast furnace process under the conditions of top gas recirculation and high oxygen enrichment of the blast

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The blast furnace process is the dominant technology in worldwide iron metallurgy. The basic fuel in this process is coke. However, coke production is associated with several adverse environmental impacts. The reduction of coke consumption in a blast furnace can be achieved by injection of auxiliary fuels or by changing the parameters of the blast. The recirculation of the top gas into the process after CO2 and H2O removal and the high enrichment of the blast with oxygen are considered to be future technologies conducive to the reduction of coke consumption. The paper presents the influence of the above-mentioned technologies on the operating parameters of the blast furnace plant. The simulation calculations were performed using the formulated theoretical-empirical mathematical model of the blast furnace plant. The mathematical model of the blast furnace is built based on the mass and energy balances of its separated temperature zones. The balances of the elements and also the energy balance equation have been set up separately for the top zone of heat transfer and the lower zone of production together with the thermal reserve zone. The balances of elements and the energy balance also for the tuyére zone have been applied. The advanced data validation and reconciliation method to eliminate incompatibilities of selected balances of mass and energy of the temperature zones of the blast furnace for the so-called basic measurement of its raw materials and energy consumption indicators in the steady-state of operation has been applied. The carried out simulation calculations showed a significant saving of coke in the process under top-gas recirculation after CO2 and H2O removal and oxygen enrichment of the blast conditions.
Rocznik
Strony
173--191
Opis fizyczny
Bibliogr. 20 poz., tab., wykr.
Twórcy
  • Faculty of Energy and Environmental Engineering of the Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
autor
  • The Silesian University of Technology, Department of Thermal Engineering, Konarskiego 22, 44-100 Gliwice, Poland
Bibliografia
  • [1] Ariyama T., Natsui S., Kon T., Ueda S., Kikuchi S., Nogami H.: Recent Progress on Advanced Blast Furnace Mathematical Models Based on Discrete Method. 2014 ISIJ International, Vol. 54 (7), 2014, 1457-1471.
  • [2] Benesch R., Janowski J., Mazanek E.: Blast Furnace Process. Śląsk Publishing House, [In Polish], 1972.
  • [3] Chu M., Yagi J.-1.: Numerical Evaluation of Blast Furnace Performance under Top Gas Recycling and Lower Temperature Operation. Steel Research No. 12, 2010.
  • [4] Larjava K.: Energy Visions 2050. VVT Technical Research Centre of Finland, 2009.
  • [5] Matsuzaki S., Nishimura T., Shinotake A., Kunitomo K., Naito M., Sugiyama T.: Development of Mathematical Model of Blast Furnace. Nippon Steel Technical Report No. 94,2006, 87-95.
  • [6] Nouchi T. Sato M., Takeda K.: Process Analysis for Blast Furnaces by the Discrete Element Method. JFE GIHO 22, 2008, 61-66.
  • [7] Peacey J. G., W.G., Davenport W. G.: The iron blast-furnace. Theory and practice. Pergamon Press, London, 1979.
  • [8] Szargut J. (ed.).: Compensation calculus in thermal engineering. Ossolineum Publishing House, [In Polish], Wroclaw, 1984.
  • [9] Szargut J., Zi~bik A.: Influence of blast parameters and fuel-reduction factors on the energy indicators of a blast furnace set. Ossolineum Publishing House, [In Polish], Wroclaw, 1983.
  • [10] Szega M.: Methodology of advanced data validation and reconciliation application in industrial thermal processes. Energy, Vol. 198, https://doi.org/10.1016/j.energy.2020.117326, 2020.
  • [11] Szega M., Blacha L., Stanek W.: Methods of Mathematical Modelling for Evaluation of Energy Management of Blast-Furnace Plant. Metalurgija No. 54, (3), 2015, 499-502.
  • [12] Ueda S., Natsui S., Nogami H., Yagi J., Ariyama T.: Recent Progress and Future Perspective on Mathematical Modeling of Blast Furnace. ISIJ International, Vol. 50 (7), 2010, 914-923.
  • [13] Yagi J., Nogami H., Yu A.: Multi-Dimensional Mathematical Model of Blast Furnace Based on Multi-Fluid Theory and its Application to Develop Super-High Efficiency Operations. Fifth Int. Conf. on CFD in the Process Industries CSIRO, Melbourne, Australia, 2006, 13-15 December. 1-6.
  • [14] Yamaoka H., Kamei Y.: Experimental Study on an Oxygen Blast Furnace Process Using a Small Test Plant. ISIJ International, Vol. 32 (6), 1992, 709-715. [15] Zi~bik A., Szega M.: Analysis of Influence of Top-Gas Recirculation on the Energy Characteristics of the Blast-Furnace Process. Bulletin of the Polish Academy of Science. Technical Science. Vol. 44, (4), 1996.
  • [16] Ziębik A., Szega M.: Zone-Balance Method of Predicting the Energy Characteristics of a Blast Furnace Plant. Bulletin of the Polish Academy of Science. Technical Science. Vol 42, (4), 1994.
  • [17] Ziębik A., Kruczek T.: Analysis of the Influence of the Top Gas Pressure on the Increase Energy Characteristics of a Blast Furnace Assembly. Bull. Pol. Acad. Sci., Techn. Sciences, Vol. 39, (2), 1991.
  • [18] van der Stel Ir. J., Louwerse Ir. G., Sert D., Hirsch A., Eklund N., Petterson M.: Top gas recycling blast furnace developments for "Green" and sustainable ironmaking. Ironmaking & Steelmaking 40 (7), 2013, 483-489.
  • [19] Blast furnace. Available at: https://www.britannica.com/technology/blast-furnace [accessed 20.04.2021].
  • [20] Stanek W.: Methodology of assessing ecological effects in thermal processes using exergy analysis, [In Polish]. Silesian University of Technology Publishing House, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2703f87b-e270-454a-a684-3279206afb58
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.