PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phase Structure and Magnetic Properties of Intermetallic Cu-Ni Alloy Nanopowders Synthesized by the Electrical Explosion of Wire

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cu-Ni composite nanoparticles were successfully synthesized by electrical explosion of wire (EEW) method. Cu-Ni alloy and twisted wires with various Ni contents were used as the feeding material for a 3 kV charging voltage EEW machine in an ethanol ambient chamber. The phase structure and magnetic properties of the as-fabricated samples were studied. It was established that the prepared powders after drying have a spherical form with the particle size is under 100 nm. XRD analysis indicated that the nanopowders consisted of binary Cu-Ni phases. Only pure phases of the intermetallic compound Cu-Ni (Cu0.81Ni0.19 and Cu3.8Ni) were observed in the XRD patterns of the samples. The synthesized intermetallic Cu-Ni alloy nanopowders reveal magnetic behaviors, however, the lower Ni content samples exhibited paramagnetic behaviors, meanwhile, the higher Ni content samples exposed ferromagnetic properties.
Twórcy
  • University of Ulsan, School of Materials Science and Engineering, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
  • Hanoi University of Science and Technology, School of Materials Science and Engineering, No 1, Dai Co Viet, Hai Ba Trung, Hanoi 100000, Vietnam
autor
  • University of Ulsan, School of Materials Science and Engineering, 93 Daehak-ro, Nam-gu, Ulsan 44610, Republic of Korea
Bibliografia
  • [1] Copper-Nickel Alloys, Properties, Processing, Application, Booklet, German Copper Insitute (DKI).
  • [2] Copper Nickel Alloys, Properties and Applications. TN 30, September 1982, Joint Publication of the Copper Development Association (UK) and the Nickel Development Institute (1982).
  • [3] J. A. Mary, et al., Structure and magnetic properties of Cu-Ni alloy nanoparticles prepared by rapid microwave combustion method, Transactions of Nonferrous Metals Society of China 24 (5), 1467-1473 (2014).
  • [4] H. Guo, et al., Controllable synthesis of Cu-Ni core-shell nanoparticles and nanowires with tunable magnetic properties, Chemical Communications 52 (42), 6918-6921 (2016).
  • [5] J. Ahmed, et al., Bimetallic Cu-Ni nanoparticles of varying composition (CuNi3, CuNi, Cu3Ni), Colloids and Surfaces A: Physicochemical and Engineering Aspects 331 (3), 206-212 (2008).
  • [6] L. Chen, et al., Preparation of Cu-Ni bimetallic nanoparticles surface-capped with dodecanethiol and their tribological properties as lubricant additive, Particuology 34, 89-96 (2017).
  • [7] G. Sharma, et al., Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review, Journal of King Saud University-Science (2017).
  • [8] R. Pérez-Hernández, et al., Synthesis and characterization of bimetallic Cu-Ni/ZrO2 nanocatalysts: H2 production by oxidative steam reforming of methanol, International Journal of Hydrogen Energy 33 (17), 4569-4576 (2008).
  • [9] L. Argueta-Figueroa, et al., Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu-Ni nanoparticles for potential use in dental materials, Progress in Natural Science: Materials International 24 (4), 321-328 (2014).
  • [10] I. Ban, et al., Synthesis of copper-nickel nanoparticles prepared by mechanical milling for use in magnetic hyperthermia, Journal of Magnetism and Magnetic Materials 323 (17), 2254-2258 (2011).
  • [11] E. L. de León-Quiroz, et al., Synthesis and Characterization of Alloys and Bimetallic Nanoparticles of CuNi Prepared by Sol-Gel Method, MRS Proceedings 1479, 914 (2012).
  • [12] G. H. Mohamed Saeed, et al., Mild Hydrothermal Synthesis of Ni-Cu Nanoparticles, Journal of Nanomaterials 5 (2010).
  • [13] M.-T. Nguyen, et al., Phase Structures and Magnetic Properties of Graphite Nanosheets and Ni-Graphite Nanocomposite Synthesized by Electrical Explosion of Wire in Liquid, Metals and Materials International (2018).
  • [14] L. H. Bac, J. S. Kim, J. C. Kim, Synthesis of Fe-Ni invar alloy nanopowder by the electrical explosion of wire in the liquid, Research on Chemical Intermediates 36 (6), 795-800 (2010).
  • [15] B. Zhao, et al., Preparation and electromagnetic wave absorption properties of novel dendrite-like NiCu alloy composite, Rsc Advances. 5 (53), 42587-42590 ( 2015).
  • [16] F. Bonet, et al., Synthesis and characterization of bimetallic Ni-Cu particles, Journal of Solid State Chemistry 172 (1), 111-115 (2003).
  • [17] C. Yang, et al., Hydrogenation of 3-nitro-4-methoxy-acetylaniline with H2 to 3-amino-4methoxy-acetylaniline catalyzed by bimetal-lic copper/nickel nanoparticles. New Journal of Chemistry 41 (9), 3358-3366 (2017).
  • [18] H. Kai, et al., Method for Determining Crystal Grain Size by X-Ray Diffraction, Crystal Research and Technology 53 (2), 1700157 (2018).
  • [19] X. P. Chen, et al., On recrystallization texture and magnetic property of Cu-Ni alloys, Materials Characterization 121, 149-156 (2016).
Uwagi
EN
1. This research was supported by The Leading Human Resource Training Program of Regional Neo industry through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (grant number) (NRF-2016H1D5A1910587).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-27017e54-7f34-4ca7-a617-00d7107a2e0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.