PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Degradation Characteristics of SPF/SPS Biocomposites

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Charakterystyka degradacji biokompozytów z włókien i skrobi z palmy cukrowej
Języki publikacji
EN
Abstrakty
EN
In this work, sugar palm fibres (SPF) were used as a biodegradable reinforcement. SPF were incorporated into sugar palm starch (SPS) plasticised with glycerol using the compression molding process. Then the SPS and SPF/SPS biocomposites were submitted to biodegradation by means of soil burial experiments. The environmental effect on the SPS and SPF/SPS biocomposites were a loss in tensile strength of 78.09% and 53.67%, respectively, at the end of 72 hrs of the weathering testing period. The biodegradation test shows that SPS degrades very quickly and loses 63.58% of its weight at the end of 72 hrs compared to the SPF/SPS biocomposites.
PL
Dla otrzymania biokompozytów zastosowano włókna z palmy cukrowej jako biodegradowalne wzmocnienie oraz matrycę ze skrobi tejże palmy. Plastyfikację przeprowadzono wykorzystując glicerynę w procesie wytłaczania. Gotowe biokompozyty były poddane biodegradacji przez umieszczenie w odpowiedniej glebie. Po 72 godzinach stwierdzono ubytek masy rzędu 78% podczas gdy w warunkach atmosferycznych stwierdzono ubytek masy około 54%. Stwierdzono również, że sama skrobia degraduje bardzo szybko i traci około 63% masy pod koniec 72- godzinnego okresu starzenia w warunkach atmosferycznych.
Rocznik
Strony
96—98
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • Malaysia, Kota Kinabalu, Universiti Malaysia Sabah, Faculty of Science and Natural Resources
autor
  • Malaysia, Serdang, Universiti Putra Malaysia, Department of Mechanical and Manufacturing Engineering
  • Malaysia, Serdang, Universiti Putra Malaysia, Institute of Tropical Forestry and Forest Products, Laboratory of Biocomposite Technology
autor
  • Malaysia, Kuala Lumpur, International Islamic University Malaysia, Department of Manufacturing and Materials Engineering
  • Malaysia, Serdang, Universiti Putra Malaysia, Institute of Tropical Forestry and Forest Products, Laboratory of Biocomposite Technology
  • Malaysia, Kuala Lumpur, International Islamic University Malaysia, Department of Manufacturing and Materials Engineering
Bibliografia
  • 1. Wan YZ, Luo H, He F, Liang H, Huang Y, Li XL. Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Compos. Sci. Technol. 2009; 69: 1212–17.
  • 2. Oksman K, Skrifvars M, Selin JF. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 2003; 63: 1317–24.
  • 3. Van den Oever MJA, Beck B, Müssig J. Agrofibre reinforced poly (lactic acid) composites: Effect of moisture on degradation and mechanical properties. Composites Part A: Applied Science and Manufacturing 2010; 41: 1628–35.
  • 4. Gindl W, Keckes J. Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos. Sci. Technol. 2004; 64: 2407–13.
  • 5. Bledzki AK, Jaszkiewicz A. Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres – A comparative study to PP. Compos. Sci. Technol. 2010; 70: 1687–96.
  • 6. Averous L, Boquillon N. Biocomposies based on plasticized starch: Thermal and mechanical behaviours. Compos. Sci. Technol. 2004; 56: 111–22.
  • 7. Ma XF, Yu JG, Kennedy JF. Studies on the properties of natural fiber reinforced thermoplastic starch composites. Carbohydrate Polymers 2005; 62: 19– 24.
  • 8. Soykeabkaew N, Supaphol P, Rujiravanit R. Preparation and characterization of jute- and flax-reinforced starchbased composite foams. Carbohydrate Polymers 2004; 58: 53–63.
  • 9. Ramirez MGL, Satyanarayana KG, Iwakiric S, Muniz GB, Tanobe V, Sahagun TF. Study of the properties of biocomposites. Part I. Cassava starch-green coir fibers from Brazil. Carbohydrate Polymers 2011; 86: 1712– 22.
  • 10. Ishak MR, Sapuan SM, Leman Z, Rahman MZA, Anwar UMK, Siregar JP. Sugar palm (Arenga pinnata): Its fibres, polymers and composites. Carbohydrate Polymers 2013; 91: 699–710.
  • 11. Sahari J, Sapuan SM. Natural Fibre Reinforced Biodegradable Polymer Composites. Rev. Adv. Mat. Sci. 2012; 30: 166-74.
  • 12. Sahari J, Sapuan SM, Zainudin ES, Maleque MA. Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Materials & Design 2013; 49: 285- 289.
  • 13. Bertolini AC, Mestres C, Colonna P, Raffi J. Free radical formation in UV and gamma-irradiated cassava starch. Carbohydrate Polymers 2001; 44: 269-71.
  • 14. Saheb DN, Jog JP. Natural fibre polymer composites: A review. Adv. Polym. Technol. 1999; 18: 351-63.
  • 15. Shubhra QTH, Alam AKMM, Beg MDH. Mechanical and degradation characteristics of natural silk fiber reinforced gelatin composites. Mat. Let. 2011; 65: 333–36.
  • 16. Sahari J, Sapuan SM, Zainudin ES, Maleque MA. Thermo-mechanical behaviours of thermoplastic starch derived from sugar palm tree (arenga pinnata). Carbohyd. Polym. 2013; 92: 1711–16.
  • 17. Kiatkamjornwong S, Sonsuk M, Wittayapichet S, Prasassarakich P, Vejjanukroh PC. Degradation of styreneg- cassava starch filled polystyrene plastics. Polym. Degrad. Stabil. 1999; 66: 323–35.
  • 18. Bonhomme S, Cuer A, Delort AM, Lemaire J, Sancelme M, Scott G. Environmental biodegradation of polyethylene. Polym. Degrad. Stabil. 2003; 81: 441-52.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26ff4c62-7f6b-4786-ad00-4d3d10160f15
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.