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Measurement of surface subsidence and ground
collapse caused by underground mining in the Boleo
Copper District, Mexico

Jong-Gwan Kim

Department of Energy and Resources Engineering, Chonnam National University, Republic of Korea

Abstract

Subsidence and vertical movements in mines are a challenge in mining operations. To qualify as a controlled mine
site, ground movements must be measured regularly during mining operations. Boleo Copper District mine was
monitored and the movement during mining operations was measured from Oct. 31, 2018 to March 15, 2019. The
evaluation of vertical and horizontal movement was determined in four locations in the mine areas M303, M303S,
M303 C, and M305. The exploitation area, which measured approximately 80 £ 90 m2 with a height of 2.4 m, impacted
the surface in the form of cracks. These cracks were observed on the topographic surveys and varied during the mining
operations from the beginning to the end. The final results indicated that the points with the greatest displacement were
those in the central zone of the mine excavation (points #3, 5, and 6) and the displacement trend of the ground was
toward this zone. In theory, the subsidence is typically lesser than the thickness of the extracted ore. In this case, the
maximum subsidence was 1.15 m and the ore seam thickness was 2.4 m. The maximum possible subsidence is typically
55e65% of the extracted seam thickness; however, because chain pillars are generally left in place, and provide some
support, this maximum possible subsidence is rarely reached. In this case, the maximum subsidence was 52% of the
seam thickness.

Keywords: subsidence, vertical movements, copper mine, surface crack, long wall, underground mine

1. Introduction

W hen an underground ore is exploited or
there are other mining-related operations

such as de-watering, the stress acting within
a rock mass becomes redistributed. As a result,
rock mass subsidence may occur in the surface of
the ground and scarps or discontinuities may be
formed. The main forms of discontinuous subsi-
dence include crown hole formation, plug subsi-
dence, dissolution cavities, block caving, and
progressive hanging wall caving. The occurrence
of such subsidence may be related to the mining
method involved and involve a variety of mech-
anisms they may also develop progressively or
suddenly. During different mining stages,
namely, surface and underground, subsidence
occurs due to mining activities. The factors

affecting or causing subsidence are revealed to be
geological setting, watering, and redistribution of
rock mass to ensure safety of mines [1]; and it is
[1e7].
The subsidence caused during mining operations

and the main forms of discontinuity include over-
burden formation, crown characterization, geolog-
ical setting, and advanced hanging wall caving, as
mentioned in the report by [1]. Many mining
methods, applying different mechanisms, used in
surface mining and especially in underground
mining have led to subsidence during extraction or
suddenly [8]. Subsidence increases due to the nature
of the surrounding rocks and geological setting.
Many forms of caving involve the progressive
migration of an unsupported mining cavity through
the overlying material to the ground's surface, and
tends to form in weak overburden materials or
regularly jointed rock, which progressively unravels
[9, 10]. Carbonate rocks are the main cause for
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subsidence in mining activities. Limestone and
dolomite are two models representing sudden
change in water content leading to ground surface
subsidence table [11, 12]; etc.) and it is [11e21].
Many accidents occur during mining activities when
safety measures are absent. These accidents can
partially destroy the mine site or lead to the loss of
life [22, 23, 24, 25]. There are many examples of mine
accidents mentioned in reports, such as the Xingtai
gypsum mine in China in November 2005, gold
mining in South Africa [1, 23]. Chengchao Iron Mine
is an example of a large-scale production mine,
which led to ground-surface collapse sinkholes
observed in the eastern mine site causing dewater-
ing. During mining exploitation and extended
vertically or horizontally. Mining activities sur-
rounding this mine were frequently subjected to the
severe threat of ground movement [4, 8]. Sustain-
ability in the mining industry is expensive (reloca-
tion, maintenance, and construction). The hole
problem in the mining industry is related to the
integration of the technical and operations man-
agement in addition to ensuring safe production
from the mine. Several factors affect the technical
constraints and production in mine stages, such as
geological setting, water content, and topographical
conditions around the mining site, mechanisms
responsible for the collapse of the overlying strata
above the mined-out areas is somewhat deficient.
This study aims to measure the collapse and

evaluate the ground surface at four locations, as
illustrated in Fig. 1. This technique involves
observing and monitoring the surface elevation at
every location. The results of investigations reveal
that the collapse of the ground due to underground
orebody extraction or dewatering activity in the
mining area has distinctive characteristics in com-
parison with those seen in other underground
mines (M303, M303S, M303 C, and M305).

2. Site characterization

Geotechnical characterization of the Boleo prop-
erty involved evaluating the various geological
structural features and depositional environments.
The mineral-bearing zones of interest on the Boleo
property are slightly dipping, bedded clay seams,
locally called mantos, plus an overlying brecciated
zone. From shallowest down, the mantos are 0, 1, 2,
3aa, 3a, 3, and 4. The manto and brecciated zones
vary in thickness; however, candidate mining areas
generally have a minimum thickness of at least
1.8 m. Overlying the brecciated zone is massive,
relatively soft sandstone. Underlying the mantos is
usually a relatively hard conglomerate with cobble;

however, in some locations, sandstone lies beneath
the mantos.
This work is focused on the crack analysis of the

mines located in the area known as “Mesa Soledad”
of Minera Boleo. This analysis aims to determine the
cause of cracks on the previous mines (M303, M303S
and M303 C) and M305 that is current developing.
Fig. 1 shows the location of each mine.

3. Site investigation

3.1. M303

To circumvent the Manto3 area, step mining was
applied to reach the ore body after excavating
through the upper interburden of Manto3. In the
case of conglomerate and repeated grading to sup-
port the lateral pressure, severe abrasion and pillar
damage was caused. Measurements of crack
displacement and cement injection were conducted.
In addition, penetration through the cracks during
the rainy season was not observed, as depicted in
Fig. 2.

Fig. 1. Location of mines, M303, M303S, M303C, and M305.
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3.2. M303S

After M303 mine was abandoned, three portals
were developed in Soledad valley, south side.
Excavation was stopped because of the inadequate
effect of rock-bolt support, lack of ability to deal
with the Retaque section, excessive layer separation
of Manto 3A, and excessive use of wood-log sup-
port. As a result, retreat mining was executed. In the
case of retreat mining, the surface cracks near the
upper road of Mesa Soledad occurred; however,
most of the horizontal displacement was not
accompanied by severe damage, such as road

destruction. Mine M303S exhibited upper cracks, as
illustrated in Fig. 3.

3.3. M303 C

M303S mine site is retreat mining termination
opens new portal with two entries. First application
of steel arch system, various tests (shotcrete, tri-
mesh, semi-shield, short wall mining, conglomerate
excavation, etc.). A large number of cracks, 5e10 cm
in size, were observed in the upper part of the pit
area using short wall mining. Because these cracks
are far from the road, they do not affect the

Fig. 2. Observed cracks at M303.

Fig. 3. Observed cracks at M303S.
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equipment or vehicles. Fig. 4 illustrates the view of
cracks on site.

3.4. M305

For the purpose of short wall mining, the main
gateway is excavated in the Manto3 layer and this
mine has two panels. The section of panel SW1 is
80 m and 2.4 m high, and currently has advanced to
approximately 90 m, which results in a volume of
approximately 17,280 m3 of extracted ore at present.
This working face was started on August 6, 2018. As
the production of this panel continued, some cracks
were observed in the upper transportation road and
valley slope. We started monitoring on October 31,
2018 in the area known as “Mesa soledad.” The
panel is located at an average depth of 60.68 m from
the surface (Fig. 5).

4. Measurements and Monitoring

The monitoring is conducted using three main
activities, namely, ground and displacement moni-
toring and elevation monitoring. Displacement and
elevation monitoring were performed with the
support of topographic surveys.

4.1. Ground and Displacement Monitoring

To investigate the ground displacement, distance-
measuring points were installed, which comprised
of two steel rods to measure the distance between
them, perpendicular to the crack. A topographic
survey of the cracks was also conducted and points
on different dates were monitored to compare the
location and elevation of each point with the varia-
tion of time.

Fig. 4. Observed cracks at M303C.

Fig. 5. Observed cracks at M305.
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Measurement of width of the crack developed due
tensile failure of the ground is a reliable and inex-
pensive means of monitoring ground movement.
Fig. 6 shows the method of measuring crack widths.
The simplest procedure is to install a pair of pins on
either side of the crack and measure the distance
between them with a steel tape.
The first four points were installed on October

31th, 2018. At that time, the total advance of the SW1
panel was 38 m. Two more points (#5 and #6) were
installed in series on November 13th. Then, on
December 12th points 7, 8, 9, and 10 were installed.
Points 8e10 were installed in series. Point number 7
was reinstalled on January 8, 2019 due to damage

caused by a car. Its new measurement was 1.332 m.
Comparing the three stages, we infer that the
number and length of the cracks increased signifi-
cantly, as the mine production continued (Fig. 7).
The measurement of point number 7 in the last

monitoring before it was damaged was 1.199 m. The
second topographic survey of the cracks and points
was conducted on February 1, 2019. The results of
the survey established that the total advance of the
SW1 panel was 73 m and the quantity of cracks
considerably increased. The third survey of the
cracks and the points was conducted on March 15,
2019. The result of the third topographic survey
demonstrated that the points were displaced toward

Fig. 6. Pin crack meter measuring crack displacement.

Fig. 7. Crack variation by development progress.

Table 1. Ground monitoring results.

Point No. 31-10-2018 13-11-2018 12-12-2018 8-1-2019 15-3-2019 Total Displacement (mm)

1 1.119 1.131 1.131 1.127 1.129 10

2 1.112 1.127 1.134 1.128 1.115 3

3 1.149 1.158 1.165 1.168 1.089 �51

4 1.269 1.262 1.258 1.256 1.263 �6

5 3.693 3.622 3.604 3.487 �131

6 3.987 3.986 3.81 �153

7 1.192 1.332 1.367 42

8 1.445 1.448 1.441 �4

9 1.975 1.982 1.966 0

10 1.383 1.386 1.375 �8
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the center of the excavated area in SW1, which in-
dicates towards the subsidence of the rock mass due
to the excavation on M305 SW1. The three stages of
the topographic survey are depicted in Fig. 7. The
results of ground monitoring are presented in Table
1.
Fig. 8 depicts the total displacement with respect

to the number of days passed since the installation
of each point. When the third topographic survey
was carried out and the points were updated on the
map, it was observed that the points moved towards
the central area of the mined area in M305 SW1.

4.2. Subsidence Monitoring

Table 2 lists the subsidence of each point,
measured from the topographic surveys conducted
on the mentioned dates. The topographic surveys
were conducted by equipment capable of GPS

reception (Trimble R8 GPS Receiver). The location
information of the station was continuously moni-
tored to determine the degree of subsidence, and
the reference point was not set separately. The re-
sults of this table demonstrate a similar trend, as
seen in Table 1. In Table 1, the measuring points #3,
#5, #6 have displacements of 51, 131, and 153 mm. In
Table 2, the subsidence rate of the same points are
22.7, 15.2, and 22.6 mm/day. This indicates that the
highest subsidence rate is measured for points that
are located in the central zone above the excavated
area.
Fig. 9 depicts the subsidence status of each point;

the total subsidence has a value between
40.5e1,114 mm and the maximum subsidence rate is
22.7 mm/day.
Considering a reported subsidence angle of draw

of 19� as reference for similar overburden rock mass,
it was calculated that the affected area is a circle

Fig. 8. Ground monitoring graph.

Table 2. Measurements of level and subsidence.

Point no. Level (m) Total subsidence (mm) Subsidence rate (mm/day)

1-2-2019 15-3-2019 22-3-2019

1 263.667 263.617 263.627 40 0.8

2 263.851 263.751 263.752 98.5 2

3 262.391 261.345 261.277 1114 22.7

4 260.737 260.456 260.431 305.5 6.2

5 261.911 261.218 261.168 742.5 15.2

6 262.125 261.069 261.020 1105.5 22.6

7 264.232 264.028 264.007 224.5 4.6

8 263.201 262.407 262.327 874 17.8

9 263.030 262.166 262..082 947.5 19.3

10 262.845 261.943 261.851 993.5 20.3
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with a diameter of 121.78 m, as SW1 is 60.68 m deep
and 80 m wide, resulting in an area of 11,649.2 m2

(see Fig. 10). Using the data obtained from the
subsidence monitoring, cone geometry was
assumed to calculate the subsidence volume as
4,465.5 m3. As the ore density is 1.41 tones/m3, the
approximate subsided weight is 6,296.35 tones. By
taking as reference the most remote cracks on the
monitored area, it was assumed that the affected
area is a 110 m diameter circle, resulting in an area
of 9,503.03 m2. As the SW1 depth is 60.68 m, the
obtained angle of draw of the subsidence is 14� and

the subsided volume is 3,642.9 m3. As the ore den-
sity is 1.41 t/m3, the approximate subsided weight is
5,136.5 tons.

5. Conclusions

The ground and displacement monitoring results
indicated that the points with greater displacement
were predominantly in the central zone of the mine
excavation (points #3, 5, and 6) and the displacement
trend of the ground pointed toward this zone. In
theory, the subsidence is typically lesser than the

Fig. 9. Level of points plotted with respect to the number of days.

Fig. 10. True scale subsidence of M305 SW1 using a reference angle of draw.
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thickness of the extracted ore [26]. In this case, the
maximum subsidence was 1.15 m and the ore seam
thickness was 2.4 m. The maximum possible subsi-
dence is typically 55e65% of the extracted seam
thickness [27, 28]; however, because chain pillars are
generally left in place and provide some support,
the maximum possible subsidence is rarely reached.
In this case, the maximum subsidence was 52% of
the seam thickness. The main reason for the subsi-
dence and cracks is the M305 underground SW1
mining. Previous cracks near M303, M303 Sur, and
M303 C exhibited no effect on the cracks because
they were produced directly as a result of under-
ground mining.
The elevation monitoring results agreed with the

theoretical results, indicating that the subsidence in
short wall/long wall mining is higher in the central
zone of the mined area and decreases as we
approach the perimeter of the panel. To obtain ac-
curate results on the rock mass subsidence volume,
surveying the entire area on different occasions after
the first monitoring and further comparison of the
surveys is required.
Finally, this phenomenon is normally experienced

when the short wall/long wall mining method is
employed, which does not represent a problem in-
side the mine because as the working face advances,
the support provided by the semishields advances
along with the working face, and the goaf area is left
without support, which causes the goaf to collapse
resulting in subsidence on the surface ground. On
the contrary, if the goaf area does not collapse
immediately, this would represent a risk within the
mine, as a large amount of rock mass could collapse
suddenly, causing terrible damage to the personnel
and the mine's machinery.
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