PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomethanation Potential and Enhancement of Acacia Leaves Waste Via Pretreatment and Co-Digestion Strategy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Acacia leaves waste biomass (AcLW) is an attractive feedstock for biomethane production by its generation amounts practically. This study evaluated the methane productivity of AcLW and its enhancement via alkaline pretreatment and co-digestion strategy. The effect of pretreatment conditions and process configuration on methane yields were investigated. The results showed that raw AcLW digestion in the single-stage process generated about 41.32 m3-CH4/kg VSadded, which increased significantly by 1.94–2.51 times to be 80.05–103.85 m3-CH4/kg VSadded for alkaline and 93.31–182.26 m3-CH4/kg VSadded for alkali-thermal pre-treated samples. The increase of NaOH concentration, soaking time and thermal supplementation affected methane productivity directly, while codigestion with pulp bio-sludge at identical solid conditions promoted about 3.38 times or 162.7 m3-CH4/kg VSadded compared to raw AcLW digestion. A profitable operation of two separated stages combining leaching bed acidification and CSTR was also depicted with 152.1 m3-CH4/kg VSadded.The maximum gases productivity of AcLW digestion was promoted with alkaline-thermal pre-treated biomass for 3.60–4.41 times increase with 67.02–75.59% of total solids reduction. This finding demonstrated the biomethanation potential of AcLW and its enhancement after pretreatment and co-digestion significantly, which increased its possibility as a biogas feedstock.
Rocznik
Strony
237--250
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Faculty of Science and Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, 18000, Thailand
  • Excellent Center of Waste Utilization and Management, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bangkok, 10150, Thailand
  • Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
  • Research Unit of Environmental Management and Sustainable Industry, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
Bibliografia
  • 1. Agbor V.B., Nazim C., Richard S., Alex B., David B.L. 2011. Biomass pretreatment: fundamentals toward application. Biotechnol Adv, 29(6), 675-85.
  • 2. Anderson G.K., Yang G. 1992. Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration. Water. Environ. Res., 53, 53-59.
  • 3. A.O.A.C. 1990. Official Methods of Analysis. 15th Edition. Association of Official Analytical Chemist, Washington DC.
  • 4. A.O.A.C. 2000. Official Methods of Analysis. 17th Edition. The Association of Official Analytical Chemists, Gaithersburg, MD, USA.
  • 5. APHA. 2005 Standard Methods for the Examination of Water and Wastewater. 21st ed. American Public Health Association/American Water Works Association/Water Environmental Federation, Washington USA.
  • 6. Bali G., Meng X., Deneff J.I., Sun Q., Ragauskas A.J. 2014. The effect of alkaline pretreatment methods on cellulose structure and accessibility. ChemSusChem, 8(2), 275-9.
  • 7. Barlianti V., Dahnum D., Hendarsyah H., Abimanyu H. 2015 Effect of Alkaline Pretreatment on Properties of Lignocellulosic Oil Palm Waste. Procedia Chemistry, 16, 195-201.
  • 8. Bassani I., Kougias P.G., Treu L., Angelidaki I. 2015. Biogas Upgrading via Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at Mesophilic and Thermophilic Conditions. Environ Sci Technol, 49(20), 12585-93.
  • 9. Bowen B.B0, Benison K.C. 2009. Geochemical characteristics of naturally acid and alkalinene saline lakes in southern Western Australia. Appl. Geochem, 24, 268–284.
  • 10. Chaiyapong P., Chavalparit O. 2016. Enhancement of biogas production potential from Acacia leaf waste using alkaline pre-treatment and co-digestion. In: 2nd 3R International Scientific Conference (2nd 3RINCs 2015). Journal of Material Cycles and Waste Management, 18(3), 427-436.
  • 11. Cirne D.G., Agbor V.B., Björnsson L. 2008. Enhanced solubilization of the residual fraction of municipal solid waste. Water Sci Technol, 57(7), 995-1000.
  • 12. Ghatak D.M., Mahanta P. 2014 Comparison of kinetic models for biogas production rate from saw dust. International Journal of Research in Engineering and Technology, 3(7), 2321-7308.
  • 13. Inail M.A., Hardiyanto E.B., Mendham D.S. 2019. Growth Responses of Eucalyptus pellita F. Muell Plantations in South Sumatra to Macronutrient Fertilisers Following Several Rotations of Acacia mangium Willd. Forest, 10(12), 1054.
  • 14. Hendricks A.T., Zeeman G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol, 100, 10–8.
  • 15. Jabasingh S.A., Nachyar C.V. 2011. Utilization of pretreated bagasse for the sustainable bioproduction of cellulase by Aspergillus nidulans MTCC344 Using response surface methodology. Industrial Crops and Products, 34, 1564-1571.
  • 16. Kullvanijaya P., Chavalparit O. 2020. The effect of ensiling and alkaline pretreatment on anaerobic acidification of Napier grass in the leached bed process. Environmental Engineering Research, 25(5), 668-676.
  • 17. Kumar K.V., Sridevi V., Rani K., Sakunthala M., Kumar C.S. 2013. A review on production of biogas, fundamentals, applications & its recent enhancing techniques. Chem Eng, 57, 14073–14079.
  • 18. Lehtomäki A., Björnsson L. 2006. Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. Journal of Applied Microbiology, 103(3), 516-27.
  • 19. Liew L.N., Shi J., Li Y. 2011. Enhancing the solidstate anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresour Technol, 102(19), 8828–8834.
  • 20. Moinul H.M., Nashir U.M., Quaiyyum M.A., Jannatun N., Zahangir A.M., Sarwar J.M. 2019. Pulpwood Quality of the Second Generation Acacia auriculiformis. Journal of Bioresources and Bioproducts, 4(2), 73-79.
  • 21. Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M., Ladisch M. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673-686.
  • 22. Mozdyniewicz D.J., Nieminen K., Kraft G., Sixta H. 2016. Degradation of viscose fibers during acidic treatment. Cellulose, 23, 213-229.
  • 23. Nielfa A., Euverink G.J.W. 2015. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnology Reports, 5, 14-21.
  • 24. Ruangmee A., Sangwichien C. 2013 Response surface optimization of enzymatic hydrolysis of narrow leaf cattail for bioethanol production. Energy Conversion and Management, 73, 381-388.
  • 25. Saha B.C. 2003 Hemicellulose bioconversion. J Ind Microbiol Biotechnol, 30, 279–91.
  • 26. Sambusiti C., Monlau F., Ficara E., Carrère H., Malpei F. 2013. A comparison of different pretreatments to increase methane production from two agricultural substrates. Appl Energy, 104, 62–70.
  • 27. Singh S.P., Prerna P. 2009. Review of recent advances in anaerobic packed-bed biogas reactors. Renewable and Sustainable Energy Reviews, 13, 1569–1575.
  • 28. Smolder G.J.F., Meij J., Loosdrecht M.C.M, Heijnen J.J. 1995 Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence. Biotechnol Bioeng, 43, 461-470.
  • 29. Sruamsiri P. 2011. Mineral Nutrient in Horticultural Crop Production. Wanida Printing Ltd., Chiang Mai, Thailand, 341.
  • 30. Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D. 2002. Dissolution of Cellose with Ionic Liquids1. J. Am. Chem. Soc., 24(18), 4974–4975.
  • 31. The Thai Pulp and Paper industries association, TPPIA Directory 2020-2022, Bangkok, Thailand, 22-56.
  • 32. Wang Z., Keshwani D.R., Redding A.P., Cheng J.J. 2010 Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technology, 101(10), 3583-5.
  • 33. Wunna K., Nakasaki K., Auresenia J., Abella L., Gaspillo P. 2017. Effect of Alkaline Pretreatment on Removal of Lignin from Sugarcane Bagasse. Chemical Engineering Transactions, 56, 1831-1836.
  • 34. Zhang R., Zhang Z. 1999. Biogasification of rice straw with an anaerobic-phased solids digester system. Bioresource Technology, 68(3), 235-245.
  • 35. Zheng M., Li X., Li L., Yang X., He Y. 2009. Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment. Bioresource Technology, 100(21), 5140-5145.
  • 36. Zheng Y., Zhao J., Xu F., Li Y. 2014. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci, 42, 35–53.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26fd7c37-da22-4eea-a186-1ad3f8ad51b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.