PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of a mixture flow of helium and methanol in thermocatalytic reactor and chemical reactions on the intermethallic phase of Ni3A

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the specified issues that occurs in the numerical modeling of complex phenomena of chemical reactions intensified with forced fluid flow in the thermocatalytic reactor channels on the intermetallic phase of Ni3Al are presented. Based on the example of flowing mixture containing helium contaminated by methanol in a horizontal microchannels, heated from the outside, received results of the experiment were shown and compared with computational fluid dynamize calculations. However, standard version of commercial code have been expanded by user definedfunctions. These extensionstransformed the calculation mechanisms and algorithms of computational fluid dynamize codes adapting them for the micro-flow cases and increased chemical reactions rate on an interphase between fluid and solid. Results obtained on the way of numerical calculations were compared with experimental data receiving satisfactory compliance.
Rocznik
Tom
Strony
33--73
Opis fizyczny
Bibliogr. 52 poz., rys.,tab.
Twórcy
  • Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, 80-231 Gdansk, Fiszera 14, Poland
autor
  • Energy Conversion Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, 80-231 Gdansk, Fiszera 14, Poland
autor
  • Department of Advanced Materials and Technologies, Faculty of Advanced Technologies and Chemistry, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Jóźwik P., Polkowski W., Bojar Z.: Applications of Ni3Al based intermetallic alloys–current stage and potential perceptivities. Materials 8(2015), 2537–2568.
  • [2] Pohar A., Belaviè D., Dolanc G., Hoèevar S.: Modeling of methanol decomposition on Pt/CeO2/ZrO2 catalyst in a packed bed microreactor. J. Power Sources 256(2014), 80–87.
  • [3] Grabowski R.: Kinetics of the oxidative dehydrogenation of propane on vanadia/titania catalysts, pure and doped with rubidium. Appl. Catal. A: Gen. 270(2004), 1-2, 37–47.
  • [4] Riaño J.S.Z., Zea H.R.R.: Modeling of a microreactor for propylene production by the catalytic dehydrogenation of propane. Comput. Chem. Eng. 67 (2014), 26–32.
  • [5] Michalska-Domańska M., Norek M.; Jóźwik P.; Jankiewicz B.; Stępniowski W.J.; Bojar Z.: Catalytic stability and surface analysis of microcrystalline Ni3Al thin foils in methanol decomposition. Appl. Surf. Sci. 293 (2014), 169–176.
  • [6] Michalska-Domańska M., Bystrzycki J., Jankiewicz B., Bojar Z.: Effect of the grain diameter of Ni-based catalysts on their catalytic properties in the thermocatalytic decomposition of methanol. C. R. Chimie 20(2017), 156–163.
  • [7] Mitani H., Xu Y., Hirano T., Demura M., Tamura R.: Catalytic properties of Ni-Fe-Mg alloy nanoparticle catalysts for methanol decomposition. Catalysis Today 281(2017), 669– 676.
  • [8] Tsoncheva T., Mileva A., Issa G., Dimitrov M., Kovacheva D., Henych J., Scotti N., Kormunda M., Atanasova G., Štengl V.: Template-assisted hydrothermally obtained titaniaceria composites and their application as catalysts in ethyl acetate oxidation and methanol decomposition with a potential for sustainable environment protection. Appl. Surf. Sci. 396(2017), 1289–1302.
  • [9] Jóźwik P., Grabowski R., Bojar Z.: Catalytic activity of Ni3Al foils in methanol reforming. Mater. Sci. Forum 636 (2010), 895–900.
  • [10] Jóźwik P., Bojar Z., Winiarek P.: Catalytic activity of Ni3Al foils in decomposition of selected chemical compounds. Mater. Eng. 3(2010), 654–657.
  • [11] Badur J.: Numerical modeling of sustainable combustion in gas turbines. Wydawnictwo IMP PAN, Gdańsk, 2003 (in Polish).
  • [12] Kuo K.K., Acharya R.: Applications of Turbulent and Multiphase Combustion. John Wiley & Sons, New Jersey 2012.
  • [13] Jóźwik P., Badur J., Karcz M.: Numerical modelling of a microreactor for thermocatalytic decomposition of toxic compounds. Chem Proc Eng 32(2011), 3, 215–227.
  • [14] Aoki N., Yube K., Mae K.: Fluid segment configuration for improving product yield and selectivity of catalytic surface reactions in microreactors. Chem. Eng. J. 133(2007), 105– 111.
  • [15] Karcz M., Badur J.: An alternative two-equation turbulent heat diffusivity closure. Int. J. Heat Mass Tran. 48 (2005), 2013-2022.
  • [16] Karcz M.: From 0D to 1D modeling of tubular solid oxide fuel cell. Energ. Convers. Manage. 50(2009), 2307–2315.
  • [17] Badur J., Karcz M., Lemański M., Nastałek L., Foundation of the Navier-Stokes boundary conditions in fluid mechanics. Trans. Inst. Fluid-Flow Mach. 123(2011), 3–55.
  • [18] Badur J., Karcz M., Lemański M.: On the mass and momentum transport in the NavierStokes slip layer. Microfluid Nanofluid 11(2011), 439–449.
  • [19] Badur J., Ziółkowski P.: Further remarks on the surface vis impressa caused by a fluid-solid contact. In: Proc. 12th Joint European Thermodynamics Conf. JETC2013 (M. Pilotelli, G.P. Beretta, Eds.), Brescia 2013, 581–586.
  • [20] Ziółkowski P., Badur J.: Navier number and transition to turbulence. J. Physics: Conf. Ser. 530(2014), 012035. doi:10.1088/1742-6596/530/1/012035
  • [21] Badur J., Ziółkowski P.J. Ziółkowski P.: On the angular velocity slip in nano flows. Microfluid Nanofluid 19(2015), 191–198.
  • [22] Ziółkowski P., Badur J.: On the unsteady Reynolds thermal transpiration law. J. Physics: Conf. Ser. 760(2016), 012041. doi:10.1088/1742-6596/760/1/012041.
  • [23] Badur J.: Five lecture of contemporary fluid termomechanics. Gdańsk 2005, www.imp.gda.pl/fileadmin/doc/o2/z3/.../ 2005_piecwykladow.pdf (in Polish).
  • [24] Badur J.: Development of energy concept. Wyd. IMP PAN, Gdańsk 2009 (in Polish).
  • [25] Badur J., Banaszkiewicz M.: Model of the ideal fluid with scalar microstructure. An application to flashing flow of water. Trans. Inst. Fluid-Flow Mach. 105(1999), 115–152.
  • [26] Bilicki Z., Badur J.: A thermodynamically consistent relaxation model for a turbulent, binary mixture undergoing phase transition. J. Non-Equil. Thermodyn. 28(2003), 145–172.
  • [27] Kornet S., Badur J.: Enhanced evaporation of the condensate droplets within the asymmetrical shock wave zone. Trans. Inst. Fluid-Flow Mach. 128(2015), 119–130.
  • [28] Lemański M., Karcz M.: Performance of lignite-syngas operated tubular Solid Oxide Fuell Cell. Chem. Process Eng. 29(2008), 233–248.
  • [29] Linstrom P.J., Mallard W.G. (Eds.): NIST Chemistry WebBook, NIST Standard Reference Database Number 69, June 2005, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http://webbook.nist.gov).
  • [30] Hofman T.: Termodynamical table for students. Politechnika Warszawska, Wydział Chemiczny, Warszawa 2008, 2 (in Polish).
  • [31] Kozaczka J.: Gasification processes. Engineering methods of calculations. AGH Kraków, Kraków 1994 (in Polish).
  • [32] Launder B.E., Spalding D.B.: Mathematical models of turbulence. Academic Press, NY, 1972.
  • [33] Shyy W.: Computational modeling for fluid flow and interfacial transport. Dover Pub., NY, 1994.
  • [34] Wilke C.R.: A viscosity equation for gas mixtures. J. Chem. Phys. 18(1950), 517–575.
  • [35] Badur J., Feidt M., Ziółkowski P.: Without heat and work – further remarks on the Gyftopoulos-Beretta exposition of thermodynamics. Proc. 4th Int. Conf. Contemporary Problems of Thermal Engineering (ISBN 978-83-61506-36-2, W. Stanek, P. Gładysz, L. Czarnowska, K. Petela (Eds), Gliwice-Katowice, 14-16 Sept. 2016, 721–728.
  • [36] Jou D., Casas-Vazquez J., Criado-Sancho M.: Thermodynamics of fluid under flow. Springer, Berlin, 2001.
  • [37] Hautman D.J., Dryer F.L., SchugK.P. Glassman I.: A multiple step over kinetic mechanism for oxidation of hydrocarbons. Combust. Sci. Technology 25(1981), 219–235.
  • [38] Badur J., Ziółkowski P., Zakrzewski W., Sławiński D., Kornet S., Kowalczyk T., Hernet J., Piotrowski R., Felicjancik J., Ziółkowski P.J.: An advanced Thermal–FSI approach to flow heating/cooling. J. Phys.: Conf. Ser. 530 (2014), 10.1088/1742–6596/530/1/012039.
  • [39] Ochrymiuk T.: Numerical prediction of film cooling effectiveness over flat plate using variable turbulent Prandtl number closures. J. Thermal Science 25(2016), 3, 280–286.
  • [40] Williams F.A.: Combustion theory. Addision Wesley, Massachussets 1965.
  • [41] Kuo K.K.: Principles of combustion. John Wiley & Sons, New York, 1986.
  • [42] Dixon-Lewis G.: Flame structure and flame reaction kinetics, II Transport phenomena in multicomponent systems. Proc. Roy. Soc. London, A 307(1968), 111–135.
  • [43] Shuen J.S., Chen K.H., Choi Y.: A coupled implicit method for chemical non-equilibrium flows at all speeds. J. Comp. Phys. 106(1993), 306–318.
  • [44] Badur J., Ziółkowski P., Sławiński D., Kornet S.: An approach for estimation of water wall degradation within pulverized-coal boilers. Energy 92(2015), 142–152.
  • [45] Jang J.H., Xu Y., Chun D.H., Demura M., Wee D.M., Hirano T.: Effects of steam addition on the spontaneous activation in Ni3Al foil catalysts during methanol decomposition. J. Molecular Catalysis A: Chemical 307(2009), 21–28.
  • [46] Xu Y., Ma Y., Sakurai J., Teraoka Y., Yoshigoe A., Demura M., Hirano T.: Effect of water vapor and hydrogen treatments on the surfacestructure of Ni3Al foil. Appl. Surf. Sci. 315(2014), 475–480.
  • [47] Moussa S.O., Samy El-Shall M.: High-temperature characterization of reactively processed nanostructure nickel aluminide intermetallics. J. Alloys Compd. 440(2007), 178–188.
  • [48] Holt J.K., Park, H.G., Wang, Y.M., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A., Bakajin, O.: Fast mass transport through sub–2-nanometer carbon nanotubes. Science 312(2006), 5776, 1034–1037.
  • [49] Whitby M., Cagnon L., Thanou M., Quirke N.: Enhanced fluid flow through nanoscale carbon pipes. Nano Lett 8(2008), 9, 2632–2637.
  • [50] Lemański M., Badur J.: Parametrical analysis of a tubular pressurized SOFC. Arch. Thermodyn. 25(2004), 1, 53–72.
  • [51] Kardaś D.: From biomass towards syngas. Trans. Inst. Fluid-Flow Mach. 127(2015), 63– 89.
  • [52] Kardaś D., Polesek-Karczewska S., Ciżmiński P., Stelmach S.: Prediction of coking dynamics for wet coal charge. Chem. Process Eng. 36(2015), 3, 291–303.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26fd770f-8b58-41fa-a3d3-1ca0e855a201
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.