PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of convective heat and mass conditions in magnetohydrodynamic boundary layer flow with joule heating and thermal radiation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A free convection viscous MHD flow over a semi-infinite vertical sheet with convective heat and mass conditions has been considered. The effects of thermal radiation, chemical reaction and Joule heating on flow are also accounted. The governing nonlinear partial differential equations have been transformed into a set of highly non-linear coupled ordinary differential equations (ODEs) using appropriate similarity transformations. Numerical solutions of transformed equations are obtained by employing the 5th order Runge-Kutta Fehlberg technique followed by the shooting technique. The influences of different flow parameters on the momentum, energy and mass field are discussed and shown graphically. Results reveal that temperature and concentration profiles enhance due to increasing heat and mass Biot number parameters.
Rocznik
Strony
103--116
Opis fizyczny
Bibliogr. 26 poz., wykr.
Twórcy
autor
  • Department of Mechanical Engineering National Institute of TechnologyArunachal Pradesh Yupia, Papum Pare District, Arunachal Pradesh-791112, INDIA
autor
  • Department of Mathematics, JECRC University Jaipur-303905, India
  • Department of Studies and Research in Mathematics Kuvempu University Shimoga-577 451, Karnataka, INDIA
autor
  • Department of Studies and Research in Mathematics Kuvempu University Shimoga-577 451, Karnataka, INDIA
Bibliografia
  • [1] Sivaraj R. and Rushi Kumar B. (2013): Chemically reacting dusty viscoelastic fluid flow in an irregular Chanel with convective boundary.− Ain Shams Engineering Journal, vol.4, No.1, pp.93-101.
  • [2] RamReddy C., Murthy P.V.S.N., Chamkha A.J. and Rashad A.M. (2013): Soret effect on mixed convection flow in a nanofluid under convective boundary condition.− International Journal of Heat and Mass Transfer, vol.64, pp.384-392.
  • [3] Hayat T., Saeed Y., Asad S. and Alsaedi A. (2015): Soret and Dufour effects in the flow of Williamson fluid over an unsteady stretching surface with thermal radiation.− Zeitschrift für Naturforschung A, vol.70, No.4, pp.235-243.
  • [4] Uddin M.J, Rostami B., Rashid M.M. and Rostami P. (2016): Similarity and analytical solutions of free convective flow of dilatant nanofluid in a Darcian porous medium with multiple convective boundary conditions.− Alexandra Engineering Journal, vol.55, No.1, pp.263-274.
  • [5] Sheikholeslami M., Hayat T. and Alsaedi A. (2016): MHD free convection of Al2O3–water nanofluid considering thermal radiation: A numerical study.− International Journal of Heat and Mass Transfer, vol.96, No.5, pp.513-524.
  • [6] Sharma R.P., Ibrahim S.M., Jain M. and Mishra S.R. (2018): Chemical reaction effect on MHD rotating fluid over a vertical plate with variable thermal conductivity: A numerical study.− Indian Journal of Pure and Applied Physics, vol.56, pp.732-740.
  • [7] Mishra S.R., Pattnaik P.K., Bhatti M.M. and Abbas T. (2017): Analysis of heat and mass transfer with MHD and chemical reaction effects on viscoelastic fluid over a stretching sheet.− Indian Journal of Physics, vol.91, pp.1219-1227.
  • [8] Gireesha B.J., Archana M., Prasannakumara B.C., Gorla R.S.R. and Makinde O.D. (2017): MHD three-dimensional double-diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a stretching surface.− International Journal of Numerical Methods for Heat and Fluid Flow, vol.27, No.12, pp.2858-2878.
  • [9] Ramzan M., Bilal M., Chung J.D. and Mann A.B. (2015): Flow of Casson nanofluid with viscous dissipation and convective conditions: a mathematical model.− Journal of Central South University, vol.22, No.3, pp.1132-1140.
  • [10] Hartmann J. and Dynamics I. (1937): Hg-dynamics I. Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field.− Math. Phys. Medd.: København, Levin and Munksgaard, Ejnar Munksgaard.
  • [11] Archana M., Gireesha B.J., Venkatesh P. and Reddy M.G. (2017): Influence of nonlinear thermal radiation and magnetic field on the three-dimensional flow of a Maxwell nanofluid.− Journal of Nanofluids, vol.6, No.2, pp.232-242.
  • [12] Makinde O.D., Khan Z.H., Ahmad R. and Khan W.A. (2018): Numerical study of unsteady hydromagnetic radiating fluid flow past a slippery stretching sheet embedded in a porous medium. − Physics of Fluids, vol.30, No.8, pp.083601.
  • [13] Rashidi M.M., Rostami B., Freidooni Meher N. and Abbasbandy S. (2014): Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects.− Ain Shams Engineering Journal, vol.5, No.3, pp.901-912.
  • [14] Ramzan M. and Bilal M. (2015): Time-dependent MHD nano-second grade fluid flow induced by permeable vertical sheet with mixed convection and thermal radiation. − PloS one, vol.10, No.5, pp.e0124929.
  • [15] Kataria H.R. and Patel H.R. (2016): Soret and heat generation effects on MHD Casson fluid flow past an oscillating vertical plate embedded through a porous medium.− Alexandria Engineering Journal, vol.55, No.3, pp.2125-2137.
  • [16] Khan I., Malik M.Y., Hussain A. and Salahuddin T. (2017): Effect of homogenous-heterogeneous reactions on MHD Prandtl fluid flow over a stretching sheet. − Results in Physics, vol.7, pp.4226-4231.
  • [17] Sheikholeslami M., Ganji D.D., Javed M.Y. and Ellahi R. (2015): Effect of thermal radiation on magnetohydrodynamic nanofluid flow and heat transfer by means of two-phase model. − Journal of Magnetism and Magnetic Materials, vol.374, pp.36-43.
  • [18] Zeeshan A., Majeed A. and Ellahi R. (2016), Effect of magnetic dipole on viscous ferrofluid past a stretching surface with thermal radiation.− Journal of Molecular Liquids, vol.215, pp.549-554.
  • [19] Nayak M.K., Akbar N.S., Pandey V.S., Khan Z.H. and Tripathi D. (2017): 3D free convective MHD flow of nanofluid over a permeable linear stretching sheet with thermal radiation, Powder Technology. − Vol.315, pp.205-215.
  • [20] Dawar A., Shah Z., Idrees M., Khan W., Islam S. and Gul T. (2018): Impact of thermal radiation and heat source/sink on Eyring–Powell fluid flow over an unsteady oscillatory porous stretching surface. − Mathematical and Computational Applications, vol.23, No.2, pp.1-18.
  • [21] Nawaz M., Zeeshan A., Ellahi R., Abbasbandy S. and Rashidi S. (2015): Joules and Newtonian heating effects on stagnation point flow over a stretching surface by means of genetic algorithm and Nelder-Mead method. − International Journal of Numerical Methods for Heat and Fluid Flow, vol.25, No.3, pp.665-684.
  • [22] Hayat T., Shafique M., Tanveer A. and Alsaedi A. (2016): Magnetohydrodynamic effects on peristaltic flow of hyperbolic tangent nanofluid with slip conditions and Joule heating in an inclined channel. − International Journal of Heat and Mass Transfer, vol.102, pp.54-63.
  • [23] Dogonchi A.S. and Ganji D.D. (2017): Analytical solution and heat transfer of two-phase nanofluid flow between non-parallel walls considering Joule heating effect. − Powder Technology, vol.318, pp.390-400.
  • [24] Muhammad T., Hayat T., Shehzad S.A. and Alsaedi A. (2018): Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes.− Results in Physics, vol.8, pp.365-371.
  • [25] CogleyA.C., VincentiW.G. and GillS.E. (1968): Differential approximation for radiative transfer in a non-gray gas near equilibrium.− AIAA J., vol.6, pp.551-553.
  • [26] Kumar G., Ramesh G.K., Shehzad S.A. and Gireesha B.J. (2020): Magneto Prandtl nanofluid past a stretching surface with non-linear radiation and chemical reaction. − Journal of Computational and Applied Research in Mechanical Engineering (JCARME), vol.9, No.2, pp.275-285.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26fcb7b3-81e4-4441-9a7a-3e6018c97d04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.