PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solid Oxide Electrolysis Cell co-methanation supported by Molten Carbonate Fuel Cell - a concept

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a concept of coupling a Solid Oxide Electrolysis Cell with a Molten Carbonate Fuel Cell for co–electrolysis of H2O with CO2 for generating synthetic fuel (methane based) for an electricity storage application on a larger scale. The concept is focused on coal/natural gas fired power plants for upgrade as peak energy storage. MCFC anode and SOEC cathode are exposed to the same flow, SOEC produces hydrogen for MCFC and MCFC delivers CO2 for methanation processes. Both electrodes have compatible polarity, thus they can be directly connected by the current collector and there is no need to apply bipolar plates. On the other side, SOEC will release oxygen to the flue gases and MCFC will capture oxygen and carbon monoxide, thus at the outlet will be a flow with increased oxygen content and decreased carbon dioxide concentration. The concept requires detailed electrochemical, chemical, and thermal simulations.
Rocznik
Strony
8--14
Opis fizyczny
Bibliogr. 48 poz., rys., wykr.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00–665 Warsaw, Poland
Bibliografia
  • [1] M. Farahnak, M. Farzaneh-Gord, M. Deymi-Dashtebayaz, F. Dashti, Optimal sizing of power generation unit capacity in ice-driven cchp systems for various residential building sizes, Applied Energy 158 (2015) 203–219.
  • [2] J. Kotowicz, A. Skorek-Osikowska, . Bartela, Economic and environmental evaluation of selected advanced power generation technologies, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 225 (3)(2011) 221–232.
  • [3] A. Hesaraki, A. Halilovic, S. Holmberg, Low-temperature heat emission combined with seasonal thermal storage and heat pump, Solar Energy 119 (2015) 122–133.
  • [4] A. Chmielewski, S. Gontarz, R. Gumiński, J. Mączak, P. Szulim, Analysis of influence of operational parameters on micro cogeneration system vibrations [analiza wpływu parametrów eksploatacyjnych na drgania układu mikrokogeneracyjnego], Przegląd Elektrotechniczny 92 (1) (2016) 45–53.
  • [5] L. Ramírez-Elizondo, G. Paap, Scheduling and control framework for distribution-level systems containing multiple energy carrier systems: Theoretical approach and illustrative example, International Journal of Electrical Power and Energy Systems 66 (2015) 194–215.
  • [6] L. Romero Rodríguez, J. Salmerón Lissén, J. Sánchez Ramos, E. Rodríguez Jara, S. Álvarez Domínguez, Analysis of the economic feasibility and reduction of a building’s energy consumption and emissions when integrating hybrid solar thermal/pv/micro-chp systems, Applied Energy 165 (2016) 828–838.
  • [7] S. Mondal, S. De, Transcritical CO2 power cycle - effects of regenerative heating using turbine bleed gas at intermediate pressure, Energy 87 (2015) 95–103.
  • [8] H. Wu, L.-J. Yang, J.-P. Yan, G.-X. Hong, B. Yang, Improving the removal of fine particles by heterogeneous condensation during wfgd processes, Fuel Processing Technology 145 (2016) 116–122.
  • [9] Bartela, A. Skorek-Osikowska, J. Kotowicz, Integration of a supercritical coal-fired heat and power plant with carbon capture installation and gas turbine, Rynek Energii 100 (3) (2012) 56–62.
  • [10] D. McLarty, J. Brouwer, C. Ainscough, Economic analysis of fuel cell installations at commercial buildings including regional pricing and complementary technologies, Energy and Buildings 113 (2016) 112–122.
  • [11] O. Corigliano, P. Fragiacomo, Technical analysis of hydrogenrich stream generation through CO2 reforming of biogas by using numerical modeling, Fuel 158 (2015) 538–548.
  • [12] X. Yang, F. Karnbach, M. Uhlemann, S. Odenbach, K. Eckert, Dynamics of single hydrogen bubbles at a platinum microelectrode, Langmuir 31 (29) (2015) 8184–8193.
  • [13] J. Milewski, Ł. Szabłowski, J. Kuta, Control strategy for an internal combustion engine fuelled by natural gas operating in distributed generation, Energy Procedia 14 (2012) 1478– 1483.
  • [14] K. Raj, S. Chan, Transient analysis of carbon monoxide transport phenomena and adsorption kinetics in ht-pemfc during dynamic current extraction, Electrochimica Acta 165 (2015) 288–300.
  • [15] A. Perna, M. Minutillo, E. Jannelli, Investigations on an advanced power system based on a high temperature polymer electrolyte membrane fuel cell and an organic rankine cycle for heating and power production, Energy 88 (2015) 874–884.
  • [16] J. Milewski, M. Wolowicz, K. Badyda, Z. Misztal, 36 kw polymer exchange membrane fuel cell as combined heat and power unit, ECS Transactions 42 (1) (2012) 75–87.
  • [17] A. Buonomano, F. Calise, M. d’Accadia, A. Palombo, M. Vicidomini, Hybrid solid oxide fuel cells-gas turbine systems for combined heat and power: A review, Applied Energy 156 (2015) 32–85.
  • [18] X. Zhang, H. Liu, M. Ni, J. Chen, Performance evaluation and parametric optimum design of a syngas molten carbonate fuel cell and gas turbine hybrid system, Renewable Energy 80 (2015) 407–414.
  • [19] J. Kupecki, J. Jewulski, K. Badyda, Comparative study of biogas and dme fed micro-chp system with solid oxide fuel cell, Applied Mechanics and Materials 267 (2013) 53–56.
  • [20] A. Grzebielec, A. Rusowicz, M. Jaworski, R. Laskowski, Possibility of using adsorption refrigeration unit in district heating network, Archives of Thermodynamics 36 (3) (2015) 15–24.
  • [21] A. Haghighat Mamaghani, B. Najafi, A. Shirazi, F. Rinaldi, 4e analysis and multi-objective optimization of an integrated mcfc (molten carbonate fuel cell) and orc (organic rankine cycle) system, Energy 82 (2015) 650–663.
  • [22] H. Huang, J. Li, Z. He, T. Zeng, N. Kobayashi, M. Kubota, Performance analysis of a mcfc/mgt hybrid power system bifueled by city gas and biogas, Energies 8 (6) (2015) 5661–5677.
  • [23] M. Law, V.-C. Lee, C. Tay, Dynamic behaviors of a molten carbonate fuel cell under a sudden shut-down scenario: The effects on temperature gradients, Applied Thermal Engineering 82 (2015) 98–109.
  • [24] V. Nekrasov, A. Lystsov, O. Limanovskaya, N. Batalov, M. Konopelko, Oxygen reduction on gold electrode in li2co3/ k2co3 (62 / 38 mol electrolyte: Experimental and simulation analysis, Electrochimica Acta 182 (2015) 61–66.
  • [25] I. Rexed, M. della Pietra, S. McPhail, G. Lindbergh, C. Lagergren, Molten carbonate fuel cells for co2 separation and segregation by retrofitting existing plants - an analysis of feasible operating windows and first experimental findings, International Journal of Greenhouse Gas Control 35 (2015) 120–130.
  • [26] R. Roshandel, M. Astaneh, F. Golzar, Multi-objective optimization of molten carbonate fuel cell system for reducing co2 emission from exhaust gases, Frontiers in Energy 9 (1) (2015) 106–114.
  • [27] U. Damo, M. Ferrari, A. Turan, A. Massardo, Simulation of an innovative startup phase for sofc hybrid systems based on recompression technology: Emulator test rig, Journal of Fuel Cell Science and Technology 12 (4).
  • [28] G. De Lorenzo, P. Fragiacomo, Energy analysis of an sofc system fed by syngas, Energy Conversion and Management 93 (2015) 175–186.
  • [29] M. Ranaweera, J.-S. Kim, In-situ temperature sensing of sofc during anode reduction and cell operations using a multijunction thermocouple network, Vol. 68, 2015, pp. 2637–2644.
  • [30] M. Ferrari, Advanced control approach for hybrid systems based on solid oxide fuel cells, Applied Energy 145 (2015) 364–373.
  • [31] P. Polverino, C. Pianese, M. Sorrentino, D. Marra, Modelbased development of a fault signature matrix to improve solid oxide fuel cell systems on-site diagnosis, Journal of Power Sources 280 (2015) 320–338.
  • [32] J. Qian, J. Hou, Z. Tao, W. Liu, Fabrication of (sm, ce)o2- _ interlayer for yttria-stabilized zirconia-based intermediate temperature solid oxide fuel cells, Journal of Alloys and Compounds 631 (2015) 255–260.
  • [33] V. Suboti´c, C. Schluckner, J. Mathe, J. Rechberger, H. Schroettner, C. Hochenauer, Anode regeneration follow- ing carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate, Journal of Power Sources 295 (2015) 55–66.
  • [34] A. Majedi, A. Abbasi, F. Davar, Green synthesis of zirconia nanoparticles using the modified pechini method and characterization of its optical and electrical properties, Journal of Sol- Gel Science and Technology 77 (3) (2016) 542–552.
  • [35] W. Budzianowski, Modelling of co2 content in the atmosphere until 2300: Influence of energy intensity of gross domestic product and carbon intensity of energy, International Journal of Global Warming 5 (1) (2013) 1–17.
  • [36] S. Butti, G. Velvizhi, M. Sulonen, J. Haavisto, E. Oguz Koroglu, A. Yusuf Cetinkaya, S. Singh, D. Arya, J. Annie Modestra, K. Vamsi Krishna, A. Verma, B. Ozkaya, A.-M. Lakaniemi, J. Puhakka, S. Venkata Mohan, Microbial electrochemical technologies with the perspective of harnessing bioenergy: Maneuvering towards upscaling, Renewable and Sustainable Energy Reviews 53 (2016) 462–476.
  • [37] S.-Y. Wu, C.-H. Lin, J.-J. Ho, Density-functional calculations of the conversion of methane to methanol on platinum-decorated sheets of graphene oxide, Physical Chemistry Chemical Physics 17 (39) (2015) 26191–26197.
  • [38] G. Guandalini, S. Campanari, Wind power plant and powerto- gas system coupled with natural gas grid infrastructure: Techno-economic optimization of operation, Vol. 9, 2015.
  • [39] G. Gahleitner, Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications, International Journal of Hydrogen Energy 38 (5) (2013) 2039–2061.
  • [40] V. N. Nguyen, Q. Fang, U. Packbier, L. Blum, Long-term tests of a jülich planar short stack with reversible solid oxide cells in both fuel cell and electrolysis modes, International Journal of Hydrogen Energy 38 (11) (2013) 4281–4290.
  • [41] W. Becker, R. Braun, M. Penev, M. Melaina, Production of fischer–tropsch liquid fuels from high temperature solid oxide co-electrolysis units, Energy 47 (1) (2012) 99–115.
  • [42] X. Sun, M. Chen, S. H. Jensen, S. D. Ebbesen, C. Graves, M. Mogensen, Thermodynamic analysis of synthetic hydrocarbon fuel production in pressurized solid oxide electrolysis cells, international journal of hydrogen energy 37 (22) (2012) 17101–17110.
  • [43] C. Stoots, J. O’Brien, J. Hartvigsen, Results of recent high temperature coelectrolysis studies at the idaho national laboratory, International Journal of Hydrogen Energy 34 (9) (2009) 4208–4215.
  • [44] H. Er-rbib, C. Bouallou, Methanation catalytic reactor, Comptes Rendus Chimie 17 (7) (2014) 701–706.
  • [45] C. M. Stoots, J. E. O’Brien, K. G. Condie, J. J. Hartvigsen, High-temperature electrolysis for large-scale hydrogen production from nuclear energy–experimental investigations, International Journal of Hydrogen Energy 35 (10) (2010) 4861–4870.
  • [46] S. Schiebahn, T. Grube, M. Robinius, V. Tietze, B. Kumar, D. Stolten, Power to gas: Technological overview, systems analysis and economic assessment for a case study in germany, International journal of hydrogen energy 40 (12) (2015) 4285–4294.
  • [47] K. Badyda, J. Kupecki, J. Milewski, Modelling of integrated gasification hybrid power systems, Rynek Energii (3) (2010) 74–79.
  • [48] J. Milewski, J. Lewandowski, A. Miller, Reducing co2 emissions from a coal fired power plant by using a molten carbonate fuel cell, in: ASME Turbo Expo 2008: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2008, pp. 389–395.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26fb572d-a6d8-46df-8112-ea90c3f00871
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.