PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On Navier slip and Reynolds transpiration numbers

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, based on the original argumentation of Reynolds and Maxwell, with consideration of previous experiences of the authors in the nano- and micro-flows area, a general form of boundary forces, that consist of contributions from the friction and the mobility components: f∂V = fr + fm, has been extended to common effects of the bulk and surface motion. Hence, adopting Reynolds’ reasoning to a porous media as a whole, we reexamine the Poiseuille–Knudsen–Reynolds equation in terms of the sum of three contributions: the bulk pressure-driven flow, and two mobility surface forces, namely the Knudsen surface slip-driven flow and the Reynolds surface thermally-driven flow. The main motivation of our work is to find the dimensionless contribution of the Navier slip number and the Reynolds thermal transpiration number in materials with high volumetric surface density.
Rocznik
Strony
269--300
Opis fizyczny
Bibliogr. 81 poz., rys. kolor.
Twórcy
  • Energy Conversion Department Institute of Fluid Flow Machinery Polish Academy of Sciences Fiszera 14 80-231 Gdańsk, Poland
autor
  • Energy Conversion Department Institute of Fluid Flow Machinery Polish Academy of Sciences Fiszera 14 80-231 Gdańsk, Poland
Bibliografia
  • 1. C.P. Celata, M. Cumo, S.J. Mcphall, L. Tesfagbir, G. Zummo, Experimental study on compressible flow in microtubes, International Journal of Heat and Fluid Flow, 28, 28–36, 2007.
  • 2. S. Colin, Rarefaction and compressibility effects on steady and transient gas flows in microchannels, Microfluidics and Nanofluidics, 1, 3, 268–279, 2005.
  • 3. G.E. Karniadakis, A. Beskok, N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation, Springer, New York, 2005.
  • 4. G.L. Morini, Y. Yang, H. Chalabi, M. Lorenzini, A critical review of the measurement techniques for the analysis of gas microflow through microchannels, Experimental Thermal and Fluid Science, 35, 849–893, 2011.
  • 5. O. Reynolds, On certain dimensional properties of matter in the gaseous state Part I. Experimental researches on thermal transpiration of gases through porous plates and on the laws of transpiration and impulsion, including an experimental proof that gas is not a continuous plenum. Part II. On an extension of the dynamical theory of gas, which includes the stresses, tangential and normal, caused by a varying condition of gas, and affords an explanation of the phenomena of transpiration and impulsion, Philosophical Transactions of the Royal Society of London, 170, 727–845, 1879.
  • 6. O. Reynolds, On the equation of motion and the boundary conditions for viscous fluid (1883), Scientific Papers on Mechanics and Physical Subjects, Vol. 2, 46, 132–137, Cambridge University Press, Cambridge, 1901.
  • 7. J.C. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Philosophical Transactions of the Royal Society of London, 170, 231–256, 1879.
  • 8. C.M. Ho, Y.C. Tai, Micro-Electro-Mechanical-Systems (MEMS) and fluid flow, Annual Review of Fluid Mechanics, 30, 579–612, 1998.
  • 9. M. Gad-El-Hak, The fluid mechanics of microdevices, Journal of Fluids Engineering, 12, 1, 5–33, 1999.
  • 10. M. Gad-El-Hak, Handbook of MEMS, CRC Press, New York, 2001.
  • 11. H. Gardeniers, A. Van Den Berg, Micro- and nanofluidic devices for environmental and biomedical applications, International Journal of Environmental Analytical Chemistry, 84, 809–819, 2004.
  • 12. M. Hosseini, M. Sadeghi-Goughari, S.A. Atashipour, M. Eftekhari, Vibration analysis of single-walled carbon nanotubes conveying nanoflow embedded in a viscoelastic medium using modified nonlocal beam model, Archives of Mechanics, 66, 4, 217–244, 2014.
  • 13. J. Maurer, P. Tabeling, P. Joseph, H. Willaime, Second order slip laws in microchannels for helium and nitrogen, Physics of Fluids, 15, 2613–2621, 2003.
  • 14. P.A. Thomson, S.M. Trojan, A general boundary condition for liquid flow at solid surface, Nature, 389, 360–362, 1997.
  • 15. A. Beskok, G.E. Karniadakis, A model for flows in channels, pipes, and ducts at micro and nano scales, Microscale Thermophysical Engineering, 3, 43–77, 1999.
  • 16. P. Ziółkowski, J. Badur, Navier number and transition to turbulence, Journal of Physics: Conference Series, 530, 012035, 2014, doi:10.1088/1742-6596/530/1/012035.
  • 17. J. Badur, P.J. Ziółkowski, P. Ziółkowski, On the angular velocity slip in nano flows, Microfluidics and Nanofluidics, 19, 191–198, 2015.
  • 18. R.G. Deissler, An analysis of second-order slip flow and temperature jump boundary conditions for rarefied gases, International Journal of Heat and Mass Transfer, 7, 681–694, 1964.
  • 19. S. Colin, P. Lalonde, R. Caen, Validation of a second-order slip flow model in rectangular microchannels, Heat Transfer Engineering, 25, 23–30, 2004.
  • 20. M.N. Kogan, Rarefied Gas Dynamics, Plenum Press, New York, 1969.
  • 21. E.B. Arkilic, M.A. Schmidt, K.S. Breuer, Gaseous slip flow in long microchannels, Journal of Microelectromechanical Systems, 6, 167–178, 1997.
  • 22. G.L. Morini, M. Lorenzi, M. Spiga, A criterion for experimental validation of slip-flow models for incompressible rarefied gases through microchanels, Microfluidics and Nanofluidics, 1, 190–196, 2005.
  • 23. J. Pitakarnnop, S. Varoutis, D. Valougergis, S. Geoffroy, L. Baldas, S. Colin, A novel experimental setup for gas microflows, Microfluidics and Nanofluidics, 8, 57–72, 2010.
  • 24. I. Newton, Philosophix Naturalis Principia Mathematica, London, 1726, 3rd edition, H. Pemberton, A. Motte [eds.], Sir Isaac Newton’s Mathematical Principles of Natural Philosophy and His System of the World, London, 1729, [revised] University of California Press, California, 1962.
  • 25. W. Pietraszkiewicz, Refined resultant thermomechanics of shells, International Journal of Engineering Science, 49, 1112–1124, 2011.
  • 26. C. Truesdell, R. Toupin, The Classical Field Theories, Principles of Classical Mechanics and Field Theory, Series: Encyclopedia of Physics (Prinzipien der Klassischen Mechanik und Feldtheorie, Handbuch der Physik), S. Flügge [Ed.], vVol. 2/3/1, 226–858, Springer, Berlin, 1960.
  • 27. O. Darrigol, Between hydrodynamics and elasticity theory: the first five births of the Navier–Stokes equation, Archive for History of Exact Sciences, 56, 95–150, 2002.
  • 28. S. Poisson, Mémoire sur les Equations générales de l’équilibre et du mouvement des Corps solides, élastiques et fluids, Essay on the general equation of equilibrium motion of a solid body in elastic fluids, Journal de l’Ecole Polytechnique, 13, 1–174, 1829 [in French].
  • 29. L. Natanson, On the laws of viscosity, Philosophical Magazine, 2, 342–356, 1901.
  • 30. L. Prandtl, Über Flüssigkeitsbewegung bei sehr kleiner Reibung, On the motion of fluids of very small viscosity, [in:] Verhandlungen des dritten internationalen Mathematiker-Kongresses in Heidelberg, 484–491, 1904 [in German].
  • 31. J. Badur, Rozwój pojęcia energii, Development of Energy Concept, IMP PAN Publishers, Gdańsk, 2009 [in Polish].
  • 32. M. Karcz, J. Badur, Numeryczna implementacja modelu racjonalnej turbulencji, Numerical implementation of rational turbulence model, Scientific Bulletin Institute Fluid Flow Machinery PAS, 531, 1490/2003, 1–34, 2003 [in Polish].
  • 33. R.W. Barber, D.R. Emerson, Challenges in modeling gas-phase flow in microchannels: from slip to transition, Heat Transfer Engineering, 27, 3–12, 2006.
  • 34. J. Badur, M. Karcz, M. Lemański, L. Nastałek, Foundations of the Navier-Stokes boundary conditions in fluid mechanics, Transactions of the Institute of Fluid-Flow Machinery, 123, 3–55, 2011.
  • 35. N. Dongari, A. Sharma, P. Durst, Pressure-driven diffusive gas flows in microchannels: from the Knudsen to the continuum regimes, Microfluidics and Nanofluidics, 6, 679–692, 2009.
  • 36. M. Karcz, J. Badur, An alternative two-equation turbulent heat diffusivity closure, International Journal of Heat and Mass Transfer, 48, 2013–2022, 2005.
  • 37. V.K. Michalis, A.N. Kalarakis, E.D. Skouras, V.N. Burganos, Rarefaction effects on gas viscosity in the Knudsen transition regime, Microfluidics and Nanofluidics, 9, 847–853, 2010.
  • 38. T.G. Myers, Why are slip lengths so large in carbon nanotubes?, Microfluidics and Nanofluidics, 10, 1141–1145, 2011.
  • 39. J. D’Alembert, Essai d’une Novelle Théorie de la Résistance des Fluids, Essay of a New Theory of Resistance of Fluids, David, Paris, 1752 [in French].
  • 40. C.A. Coulomb, Expériences destinées à déterminer la cohérence des fluides et les lois de leur résistance dans les mouvement très lents, Experiments to determine the coherence of fluids and laws of their resistance in very slow movements, Mémoires de l’Institut National des Sciences et Arts – Mémoires de Mathématiques et de Physique, 3, 246–305, 1801 [in French].
  • 41. K. Kamrin, H.A. Stone, The symmetry of mobility laws for viscous flow along arbitrarily patterned surfaces, Physics of Fluids, 23, 031701, 2011.
  • 42. C. Truesdell, Rational Fluid Mechanics, Orell Füssil, Zürich, pp. 1687–1765, 1954.
  • 43. M. Feidt, Finite Physical Dimensions Optimal Thermodynamics. 1 Fundamentals, ISTE Press /Elsevier, London, 2017.
  • 44. P. Duhem, Reserches sur l’hydrodynamique, Research on hydrodynamics, Annales de la Faculté des Sciences de Toulouse, 5, 4, 353–404, 1903 [in French].
  • 45. C.L.M.H. Navier, Mémoire sur les lois du mouvement des fluids, Memory on the laws of fluid motion, Mémoires l’Académie Royale des Sciences de l’Institut de France, 6, 389–440, 1827 [in French].
  • 46. D.L. Morris, A. Hannon, A.L. Garcia, Slip length in a dilute gas, Physical Review A, 46, 5279–5282, 1992.
  • 47. J. Badur, M. Karcz. M. Lemański, On the mass and momentum transport in the Navier–Stokes slip layer, Microfluidics and Nanofluidics, 11, 439–449, 2011.
  • 48. T.E. Stanton, J.R. Pannell, Similarity of motion in relation to the surface friction of fluids, Philosophical Transactions of the Royal Society of London, 214, 199–221, 1914.
  • 49. S. Colin, Single-phase gas flow in microchannels, [in:] S. Kandlikar et al., Heat Transfer and Fluid Flow in Minichannels and Microchannels, Elsevier, Oxford, 9–86, 2006.
  • 50. J. Badur, M. Karcz, M. Lemański, L. Nastałek, Enhancement transport phenomena in the Navier–Stokes shell-like slip layer, CMES: Computer Modeling in Engineering & Sciences, 73, 299–310, 2011. doi:10.3970/cmes.2011.073.299.
  • 51. J. Badur, P. Ziółkowski, W. Zakrzewski, D. Sławiński, M. Banaszkiewicz, O. Kaczmarczyk, S. Kornet, P.J. Ziółkowski, On the surface vis impressa caused by a fluid-solid contact, [in]: Shell Structures: Theory and Applications, W. Pietraszkiewicz & J. Górski [eds.], 3, 53–56, 2014.
  • 52. W. Crookes, On repulsion resulting from radiation. Parts III & IV, Philosophical Transactions of the Royal Society of London, 166, 325–376,1876.
  • 53. J. Tyndall, On Dust and Disease, W. Clowes and Sons, London, 1870.
  • 54. D.A. Edwards, H. Brenner, Interfacial Transport Processes and Rheology, Butterworth-Heinemann, Boston, 1991.
  • 55. H. Helmholtz, G. Von Piotrowski, Über Reibung von opfbarer Flüssigkeiten, Abrasion of opaque liquids [in]: Wissenschaftliche Abhandlungen Flüssigkeiten, Scientific Papers, H. Helmholtz, J. A. Barth [eds.], Leipzig, 172–222, 1882 [in German].
  • 56. A. Knudt, E. Warburg, Ueber Reibung und Wärmeleitung verdünnter Gase, On friction and heat conduction of dilute gases, Annalen der Physik, 231, 7, 337-365, 1875; 232, 10, 177–211, 1875 [in German].
  • 57. J. Badur, B.H. Sun, Some remarks on the structure of evolution equations, Applied Mathematics and Mechanics, 16, 747–757, 1995.
  • 58. S.S. Hsieh, H.H. Tsai, C.Y. Lin, C.F. Huang, C.M. Chien, Gas flow in a long microchannel, International Journal of Heat and Mass Transfer, 47, 3877–3887, 2004.
  • 59. J.T.C. Liu, M.E. Fuller, K. L. Wu, A. Czulak, A.G. Kithes, C.J. Felten, Nanofluid flow and heat transfer in boundary layers at small nanoparticle volume fraction: zero nanoparticle flux at solid wall, Archives of Mechanics, 69, 75–100, 2017.
  • 60. J.R. Bielenberg, H. Brenner, A continuum theory of thermal transpiration, Journal of Fluid Mechanics, 546, 1–23, 2006.
  • 61. P. Ziółkowski, J. Badur, A theoretical, numerical and experimental verification of the Reynolds thermal transpiration law, International Journal of Numerical Methods for Heat and Fluid Flow, 28, 1, 64–80, 2018, https://doi.org/10.1108/HFF-10-2016-0412.
  • 62. D.A. Lockerby, A. Patronis, M.K. Borg, J.M. Reese, Asynchronous coupling of hybrid models for efficient simulation of multiscale systems, Journal of Computational Physics, 284, 261–272, 2015.
  • 63. A. Kucaba-Piętal, Microchannels flow modelling with the micropolar fluid theory, Bulletin of the Polish Academy of Sciences: Technical Sciences, 52, 209–214, 2004.
  • 64. T.A. Kowalewski, P. Nakielski, F. Pierini, K. Zembrzycki S. Pawłowska, Micro and nano fluid mechanics, [in]: Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues, M. Kleiber et al. [eds.], 27–34, 2016.
  • 65. A. Kucaba-Piętal, Z. Walenta, Z. Peradzyński, Molecular dynamics computer simulation of water flows in nanochannels, Bulletin of the Polish Academy of Sciences: Technical Sciences, 57, 55–61, 2009.
  • 66. F.C. Goodrich, The theory of capillarity excess viscosities, Proceedings of the Royal Society A, 374, 341–370, 1981.
  • 67. T.S. Storvick, H.S. Park, S.K. Loyalka, Thermal transpiration: a comparison of experiment and theory, Journal of Vacuum Science and Technology, 15, 1844–1852, 1978.
  • 68. M. Rojas-Cárdenas, I. Graur, P. Perrier, J.G. Meolans, Thermal transpiration flow: A circular cross-section microtube submitted to a temperature gradient, Physics of Fluids, 25, 031702, 2011.
  • 69. J.M. Reese, Y. Zheng, D.A. Lockerby, Computing the near-wall region in gas micro- and nanofluidics: critical Knudsen layer phenomena, Journal of Computational and Theoretical Nanoscience, 4, 807–813, 2007.
  • 70. T. Ewart, P. Perrier, P.I. Graur, J.G. Meolans, Tangential momentum accommodation in microtubes, Microfluidics and Nanofluidics, 3, 689–695, 2007.
  • 71. E.H. Kennard, Kinetic Theory of Gases: with an Introduction to Statistical Mechanics, McGraw-Hill Book Company, New York, 1938.
  • 72. E. Fried, M.E. Gurtin, Tractions, balances and boundary conditions for nonsimple materials with application to liquid flow at small-length scales, Archive for Rational Mechanics and Analysis, 182, 513–554, 2005.
  • 73. K. Hooman, Heat and fluid flow in a rectangular microchannel filled with a porous medium, International Journal of Heat and Mass Transfer, 51, 5804–5810, 2008.
  • 74. G.L. Vignoles, P. Charrier, C. Preux, B. Dubroca, Rarefied pure gas transport in non-isothermal porous media: effective transport properties from homogenization of the kinetic equation, Transport in Porous Media, 73, 211–232, 2008.
  • 75. M.T. Matthews, J.M. Hill, On thee simple experiments to determine slip lengths, Microfluidics and Nanofluidics, 6, 611–619, 2009.
  • 76. P. De Gennes, F. Brochard-Wyart, D. Quere, Capillarity and Wetting Phenomena, Springer, New York, 2004.
  • 77. K. Vafai, C.L. Tien, Boundary and inertial effects on flow and heat transfer in porous media, International Journal of Heat and Mass Transfer, 24, 195–203, 1981.
  • 78. T. Ochrymiuk, Numerical analysis of microholes film/effusion cooling effectiveness, Journal of Thermal Science, 26, 5, 459–464, 2017.
  • 79. R.N. Moghaddam, M. Jamiolahmady, Slip flow in porous media, Fuel, 173, 298–310, 2016.
  • 80. P. Krakowska, P. Madejski, J. Jarzyna, Permeability estimation using CFD modeling in tight Carboniferous sandstone, 76th EAGE Conference & Exhibition 2014 Amsterdam RAI, doi: 10.3997/2214-4609.20141607, 2014.
  • 81. C.B. Sobhan, G.P. Peterson, Microscale and Nanoscale Heat Transfer Fundamentals and Engineering Applications, CRC Press, Taylor & Francis Group, Boca Raton, 2008.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26f9dc91-004a-4b6a-8f8c-2177a89f2e81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.