PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Separation of Co(II), Cu(II), Ni(II) and Mn(II) from synthetic hydrochloric acid leaching solution of spent lithium ion batteries by solvent extraction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spent lithium ion batteries contain valuable critical metals such as cobalt, copper, lithium and nickel. In order to develop a process for the separation of the divalent metal ions from spent lithium ion batteries, solvent extraction experiments were performed by employing synthetic hydrochloric acid leaching solution. The synthetic solution contained Cu(II), Co(II), Mn(II) and Ni(II) and its acidity was 3 M HCl. Extraction with Aliquat 336 led to selective extraction of Cu(II) with a small amount of Co(II). After adding NaCl to the Cu(II) free raffinate to enhance the complex formation of Co(II), Co(II) was selectively extracted into Aliquat 336 together with Mn(II). The small amount of Mn(II) in the loaded Aliquat 336 was scrubbed by pure Co(II) solution. After adjusting the pH of the raffinate to 3, 91,3% of Mn(II) was selectively extracted over Ni(II) by the mixture of D2EHPA and Alamine 336. In this extraction, the mole fraction of D2EHPA in the mixture affected the extraction of Mn(II). McCabe-Thiele diagrams for the extraction of Cu(II) and Co(II) were constructed. Batch simulation experiments for the three stage counter-current extraction verified the selective extraction of the target metal ions in each extraction step. Namely, the total extraction percentage of Cu(II) and Co(II) was 71.6% and 98.8% respectively. Most metals in the loaded organic phase were stripped completely with the appropriate agents (1.0 M H2SO4 for Cu(II), 0.1 M H2SO4 for Co(II) and 0.3 M HCl for Mn(II) stripping). A process was proposed to separate the metal ions by solvent extraction.
Rocznik
Strony
699--610
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University, Chonnam 534-729, Republic of Korea
  • Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University, Chonnam 534-729, Republic of Korea
Bibliografia
  • ARAL, H., VECCHIO-SADUS, A., 2008. Toxicity of lithium to humans and the environment-A literature review. Ecotoxicol. Environ. Saf. 70, 349–356.
  • CHAGNES, A., POSPIECH, B., 2013. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. J. Chem. Technol. Biotechnol. 88, 1191–1199.
  • CHEN, X., XU, B., ZHOU, T., LIU, D., HU, H., FAN, S., 2015. Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries. Sep. Purif. Technol. 144, 197–205.
  • DEVI N.B., NATHSARMA K.C., CHAKRAVORTTY V., 2000. Separation of divalent manganese and cobalt ions from sulphate solutions using sodium salts of D2EHPA, PC 88A and Cyanex 272. Hydrometallurgy 54, 117–131.
  • DEVI, N., 2015. Extraction of manganese (II) from acidic buffer medium using D2EHPA and Cyanex 272 as extractants. J. Chem. Pharm. Res. 7, 766–776.
  • GAMMONS, C.H., SEWARD, T.M., 1996. Stability of manganese (II) chloride complexes from 25 to 300°C. Geochim. Cosmochim. Acta 60, 4295–4311.
  • HOH, Y.C., CHUANG, W.S., LEE, B.D., CHANG, C.C., 1984. The separation of manganese from cobalt by D2EHPA. Hydrometallurgy 12, 375–386.
  • JOULIÉ, M., LAUCOURNET, R., BILLY, E., 2014. Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. J. Power Sources 247, 551–555.
  • LE, M.N., SON, S.H., LEE, M.S., 2019. Extraction behavior of hydrogen ion by an ionic liquid mixture of Aliquat 336 and Cyanex 272 in chloride solution. J. Korean Inst. Met. Mater. 57, 162–169.
  • LEE, M.S., Oh, Y.J., 2004. Estimation of thermodynamic properties and ionic equilibria of cobalt chloride solution at 298 K. Mater. Trans. 45, 1317–1321.
  • LOMMELEN, R., VANDER HOOGERSTRAETE, T., ONGHENA, B., BILLARD, I., BINNEMANS, K., 2019. Model for Metal Extraction from Chloride Media with Basic Extractants: A Coordination Chemistry Approach. Inorg. Chem.58, 12289–12301.
  • NGUYEN, T.H., LEE, M.S., 2018. A review on the separation of lithium ion from leach liquors of primary and secondary resources by solvent extraction with commercial extractants. Processes 6, 1–15. https://doi.org/10.3390/pr6050055.
  • ORDOÑEZ, J., GAGO, E.J., GIRARD, A., 2016. Processes and technologies for the recycling and recovery of spent lithiumion batteries. Renew. Sustain. Energy Rev. 60, 195–205.
  • PORVALI, A., AALTONEN, M., OJANEN, S., VELAZQUEZ-MARTINEZ, O., ERONEN, E., LIU, F., WILSON, B.P., SERNA-GUERRERO, R., LUNDSTRÖM, M., 2019. Mechanical and hydrometallurgical processes in HCl media for the recycling of valuable metals from Li-ion battery waste. Resour. Conserv. Recycl. 142, 257–266.
  • POSPIECH, B., CHAGNES, A., 2015. Highly Selective Solvent Extraction of Zn(II) and Cu(II) from Acidic Aqueous Chloride Solutions with Mixture of Cyanex 272 and Aliquat 336. Sep. Sci. Technol. 50, 1302–1309.
  • REGEL-ROSOCKA, M., STASZAK, K., WIESZCZYCKA, K., & MASALSKA, A., 2016. Removal of cobalt(II) and zinc(II) from sulphate solutions by means of extraction with sodium bis(2,4,4-trimethylpentyl)phosphinate (Na-Cyanex 272). CLEAN TECHNOL ENVIR, 18(6), 1961–1970.
  • RYBKA, P., REGEL-ROSOCKA, M., 2012. Nickel(II) and Cobalt(II) Extraction from Chloride Solutions with Quaternary Phosphonium Salts. Sep. Sci. Technol. 47, 1296–1302.
  • SARANGI K., REDDY B.R., DAS R.P., 1999. Extraction studies of cobalt (II) and nickel (II) from chloride solutions using Na-Cyanex 272. Separation of Co(II)/Ni(II) by the sodium salts of D2EHPA, PC88A and Cyanex 272 and their mixtures. Hydrometallurgy 52, 253–265.
  • SUZUKI, T., NAKAMURA, T., INOUE, Y., NIINAE, M., SHIBATA, J., 2012. A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media. Sep. Purif. Technol. 98, 396–401.
  • TORKAMAN, R., ASADOLLAHZADEH, M., TORAB-MOSTAEDI, M., GHANADI MARAGHEH, M., 2017. Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process. Sep. Purif. Technol. 186, 318–325.
  • UCHIKOSHI, M., SHINODA, K., 2018. Determination of structures of cupric-chloro complexes in hydrochloric acid solutions by UV-Vis and X-ray absorption spectroscopy. Struct. Chem. doi:10.1007/s11224-018-1164-7.
  • WANG, F., SUN, R., XU, J., CHEN, Z., KANG, M., 2016. Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid-liquid separation and solvent extraction. RSC Adv. 6, 85303–85311.
  • WANG, H., FRIEDRICH, B., 2015. Development of a Highly Efficient Hydrometallurgical Recycling Process for Automotive Li–Ion Batteries. J. Sustain. Metall. 1, 168–178.
  • XU, J., THOMAS, H.R., FRANCIS, R.W., LUM, K.R., WANG, J., LIANG, B., 2008. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 177, 512–527.
  • YAO, Y., ZHU, M., ZHAO, Z., TONG, B., FAN, Y., HUA, Z., 2018. Hydrometallurgical Processes for Recycling Spent Lithium-Ion Batteries: A Critical Review. ACS Sustain. Chem. Eng. 6, 13611–13627.
  • ZHANG, W., CHENG, C.Y., 2007. Manganese metallurgy review. Part II: Manganese separation and recovery from solution. Hydrometallurgy 89, 160–177. https://doi.org/10.1016/j.hydromet.2007.08.009. NG, F.C., WU, Y., LIU, H.Z., 2011. Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A. Sep. Purif. Technol. 78, 345–351.
  • ZHENG, X., ZHU, Z., LIN, X., ZHANG, Y., HE, Y., CAO, H., SUN, Z., 2018. A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries. Engineering 4, 361–370.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26e7fd05-ef60-4c44-87fc-65da845bbb96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.