PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Confinement Stress on Rock Mass Stability

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ ograniczenia naprężenia na stabilność masy skalnej
Języki publikacji
EN
Abstrakty
EN
A huge number of factors controls rock mass failure, but it is mainly influenced by the state of stress and in particular on the bearing capacity and failure mechanism of the massif. The evaluation of rock mass strength in confined and unconfined compression, as well as its tension strength, are key issues to understand rock mass behaviour prior to failure. A connection between the laboratory analyses of the rock mass and the practical use of the obtained data is presented in the current work. The strength properties, confinement effect and failure mechanisms are successfully studied in volcanic rock specimens from an underground mine. In order to estimate the confinement effect on rock mass strength properties, different confined compression stresses on rock specimens are applied. In addition, the crack initiation and propagation in rock samples are observed and rock mass failure mechanisms are studied. The obtained data is used for stability analyses of an underground openings through determination of the safety factor. The obtained results of the safety factors underlined the influence of the confining stress on the rock mass. The tendency of increasing values of the shear safety factor and decreasing values of the tensile safety factor as confinement increases is found. This is an important observation that would allowed more accurate predictions of the stable and unstable zones of the underground openings to be carried out, and thus the stability of the rock mass to be improved.
Rocznik
Strony
17--25
Opis fizyczny
Bibliogr. 26 poz., tab., wykr., zdj.
Twórcy
  • ESV EURIDICE EGI, Mol, Belgium
  • DER/CERENA, Técnico Lisboa, ULisboa, Lisbon, Portugal
  • Geological Institute, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • Higher School of Civil Engineering, Sofia, Bulgaria
  • DECivil/CERENA, Técnico Lisboa, ULisboa, Lisbon, Portugal
  • DECivil/CERENA, Técnico Lisboa, ULisboa, Lisbon, Portugal
Bibliografia
  • 1. J. Liu, P. Cao and D. Han, “The influence of confining stress on optimum spacing of TBM cutters for cutting granite”, Int. J. Rock Mech. and Min. Sci. 88, 165-174 (2016).
  • 2. T. Singh and V. Singh “Effect of confined and unconfined stress on jointed rocks” Indian J. Eng. and Mat. Sci. 6, 198-205 (1999).
  • 3. Z. Chen, L. Tham, M. Yeung and H. Xie, “Confinement effects for damage and failure of brittle rocks”, Int. J. Rock Mech. & Min. Sci. 43, 1262-1269 (2006).
  • 4. W. Sukplum and L. Wannakao, “Influence of confining pressure on the mechanical behavior of Phu Kradung sandstone”, Int. J. Rock Mech. Min. Sci. 86, 48-54 (2016).
  • 5. R. P. Bewick, P. K. Kaiser and B. Valley, “Interpretation of triaxial testing data for estimation of the Hoek-Brown strength parameter mi” Proc. ARMA., 11-347 (2011).
  • 6. K. Mogi, Experimental Rock Mechanics (Taylor and Francis, Balkema, 2007), p. 361.
  • 7. C. A. Tang and J. A. Hudson, Rock failure mechanisms (London: Taylor & Francis, 2011), p. 322.
  • 8. M. Perras and M. Diederichs, “A review of the tensile strength of rock: concepts and testing”, Geotech Geol Eng. 32, 525-546 (2014).
  • 9. ISRM, “Suggested methods for determining tensile strength of rock materials”, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15 (3), 99-103 (1978).
  • 10. E. Hoek, P. Kaiser and W. Bawden, Support of underground excavations in hard rock (AA Balkema,1995), p. 225.
  • 11. E. Hoek and E.T. Brown, “Practical Estimates of rock mass strength”, Int. J. Rock Mech. Min. Sci. 34 (8), 1165-1186 (1997).
  • 12. E. Hoek, C. Carranza-Torres and B. Corkum, “Hoek-Brown failure criterion”, NARMS-TAC Conf., Toronto 1, 267-273 (2002).
  • 13. Z. Girgin, “Modified Johnston Failure Criterion from rock mechanics to predict the ultimate strength of fiber reinforced polymer (FRP) confined columns”, Polymers. 6, 59-75 (2014).
  • 14. E. Alonso, , I. Carol, C. Delahaye, A. Gens, P. Prat. Evaluation of Safety Factors in discontinuous rock. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 33 (5), 513-537 (1996).
  • 15. B. H. G. Brady and E. T. Brown, Rock Mechanics for underground mining. 3th Ed., (Springer, 2005), p. 628.
  • 16. ISRM, “Suggested methods for determining the uniaxial compressive strength and deformation of rock materials”, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16 (2), 135-140 (1979).
  • 17. ASTM D2938-95 “Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens”, ASTM International, West Conshohocken, PA (2002).
  • 18. C. Jaeger Rock mechanics and engineering (Cambridge University Press, Sec Edit., 1979), p. 463.
  • 19. M. S. Diederichs, M. Lato, P. Quinn and R. Hammah “Shear strength reduction (SSR) approach for slope stability analysis”, Proc. of 1st Can–U.S. Rock Mech. Symp., 319-327 (2007).
  • 20. E. Hoek “Strength of jointed rock masses”, 23rd Rankine Lecture. Géotechnique 33(3), 187-223 (1983).
  • 21. O. Ledesma, I. Garcia Mendive and A. Sfriso “Factor of safety by the strength-reduction technique applied to the Hoek-Brown model”, Mecánica Computacional, 2599-2622 (2016).
  • 22. X. Li, D. Li, Z. Liu, G. Zhao and W. Wang, “Determination of the minimum thickness of crown pillar for safe exploitation of a subsea gold mine based on numerical modelling”, Int. J. Rock Mech. Min. Sci. 57, 42-56 (2013).
  • 23. E. Hoek, Practical Rock Engineering, (E-notes www. rocscience.com; 2007), p. 237.
  • 24. A. Verma and T. Singh, “Modeling of a jointed rock mass under triaxial conditions”, Arab. J. Geosci. 3 (1), 91-103 (2009).
  • 25. J. Yu, X. Chen, Y. Cai and H. Li, “Triaxial test research on Mechanical Properties and Permeability of sandstone with a single joint filled with gypsum”, KSCE J. Civ. Eng. 20 (6), 2243-2252 (2016).
  • 26. Rocscience Ltd., “RocLab. Software for calculating Hoek-Brown Rock Mass Strength”, https://www.rocscience.com (2002).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26e367e1-72ae-4539-9537-58b0667dd231
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.