PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of a solid product with high water content and water retention properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents the development of a solid product with a high water content (99.08%) and water retention properties. Water was chosen as a potential carrier of a volatile active substance and water retaining properties of material were studied at a temperatures and relative air humidity values with the support of the theory of drying. The study first confirmed the role of Gibbs’ phase rule in the research of solid-gas phase equilibrium, and second presented drying kinetics developed from Fick’s second law and expressed with the first term of the Fourier equation. Solutions of equations for phase equilibrium and mass transfer enabled the calculation of Luikov’s parameters, which are important for equilibrium relations and for the diffusivity of water in a solid for mass transfer prediction. The obtained thermodynamic and kinetic parameters enabled product characterisation that may be important for the prediction of retention times.
Rocznik
Strony
17--23
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000, Ljubljana, Slovenia
  • Unichem, Sinja Gorica 2, 1360, Vrhnika, Slovenia
autor
  • University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000, Ljubljana, Slovenia 2 , Unichem, Sinja Gorica 2, 1360, Vrhnika, Slovenia
Bibliografia
  • 1. Bergenståhl, B. & Claesson, P.M. (1997). Surface forces in emulsions. In K. & F. Larsson S. (Ed.), Food Emulsions (3rd ed., pp. 57–109). YKI – Ytkemiska institutet: Marcel Dekker.
  • 2. Drelich, A., Gomez, F., Clausse, D. & Pezron, I. (2010). Evolution of water-in-oil emulsions stabilized with solid particles: Influence of added emulsifier. Colloids Surfaces A Physicochem. Eng. Asp. 365, 171–177. DOI: 10.1016/j.colsurfa.2010.01.042.
  • 3. Li, C., Mei, Z., Liu, Q., Wang, J., Xu, J. & Sun, D. (2010). Formation and properties of paraffin wax submicron emulsions prepared by the emulsion inversion point method. Colloids Surfaces A Physicochem. Eng. Asp. 356(1–3), 71–77. DOI: 10.1016/j.colsurfa.2009.12.036.
  • 4. Ushikubo, F.Y. & Cunha, R.L. (2014). Stability mechanisms of liquid water-in-oil emulsions. Food Hydrocoll. 34, 145–153. DOI: 10.1016/j.foodhyd.2012.11.016.
  • 5. Mujumdar, A.S. (2004). Research and development in drying: Recent trends and future prospects. Dry. Technol. 22(1–2), 1–26. DOI: 10.1081/DRT-120028201.
  • 6. Connick, W., Daigle, D. & Quimby, P. (1991). An Improved Invert Emulsion with High Water Retention for Mycoherbicide Delivery. Weed Technology 5(2), 442–444. DOI: 10.1017/S0890037X00028402.
  • 7. Williams, S.D. & Schmitt, W.H. (Ed.). (1992). Chemistry and Technology of the Cosmetics and Toiletries Industry (1st ed.). Springer Netherlands.
  • 8. Klein, K. (2003). Formulating Water-in-Oil Emulsions: A Scary Endeavor, 118, 24–25.
  • 9. Williams, D.F. (2002). The chemistry and manufacture of cosmetic (Volume III).
  • 10. Binks, B.P. & Rocher, A. (2009). Effects of temperature on water-in-oil emulsions stabilised solely by wax microparticles. J. Colloid Interf. Sci. 335(1), 94–104. DOI: 10.1016/j.jcis.2009.03.089
  • 11. Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. J. Res. Natl. Bur. Stand., A Phys. Chem. 81A(1), 89. DOI: 10.6028/jres.081A.011
  • 12. Young, J.F. (1967). Humidity control in the laboratory using salt solutions. J. Appl. Chem. 17(September), 241–245.
  • 13. Henríquez, C.J.M. (2009). W/O Emulsions: Formulation, Characterization and Destabilization. Doctoral thesis. Brandenburgische Technische Universität Cottbus, Fakultät fur Umweltwissenschaften und Verfahrenstechnik. http://opus4.kobv.de/opus4-btu/frontdoor/deliver/index/docId/471/file/genehmigte_Diss_Morales.pdf.
  • 14. Webster, J.G. (Ed.). (1999). The measurement, instrumentation and sensors (1st ed.). CRC Press LLC.
  • 15. Keey, R.B. (1978). Introduction to Industrial Drying Operations. Pergamon Press.
  • 16. Babbitt, J.D. (1950). On the differential equations of diffusion. Can J. Res. 28(2172), 449–474. DOI: 10.1139/cjr50a-037
  • 17. Crank, J. (1975). The Mathematics of Diffusion (2nd ed.). Clarendon Press.
  • 18. Wexler, A. & Hasegawa, S. (1954). Relative humiditytemperature relationships of some saturated salt solutions in the temperature range 0 degree to 50 degrees C. J. Res. Natl. Bur. Stand. 53(1), 19–26. DOI: 10.6028/jres.053.003.
  • 19. Keey, R.B. (1972). Drying principles and practice. Pergamon Press. 20. Bell, L.N. & Labuza, T.P. (2000). Practical Aspects of Moisture Sorption Isotherm Measurement and Use (2nd ed.). AACC Eagan Press.
  • 20. Bell, L.N. & Labuza, T.P. (2000). Practical Aspects of Moisture Sorption Isotherm Measurement and Use (2nd ed.). AACC Eagan Press.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26ddb422-853b-4f6d-a844-f3d074286847
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.