PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deanthropomorphized Pancomputationalism and the Concept of Computing

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pancomputationalism is quite a wide-ranging concept, but most of its variants, either implicitly or explicitly, rely on Turing’s conceptualizations of a computer and computing, which are obvious anthropomorphisms. This paper questions the concept of pancomputationalism based on Turing computing and asks what concept of computation can be used to avoid the constrains of anthropomorphisations.
Rocznik
Strony
45--54
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Pontifical University of John Paul II in Kraków, Faculty of Philosophy, Chair of History and Philosophy of Science, 31-002 Kraków, ul. Kanonicza 9
  • Pontifical University of John Paul II in Kraków, Faculty of Philosophy, 31-002 Kraków, ul. Kanonicza 9
Bibliografia
  • [1] Agassi J., Anthropomorphism in Science. In: Dictionary of the History of Ideas: Studies of Selected Pivotal Ideas (Editor: P.P. Wiener). New York: Scribner, 1968, 97–91.
  • [2] Anderson N.G., Piccinini G., Pancomputationalism and the Computational Description of Physical Systems [preprint]. 2017.
  • [3] Barrow J.D., A New Mathematics for a New Era [Matematyka nowej ery]. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (16), 1994, 87–99.
  • [4] Beraldo-de-Araújo A., Baravalle L., The Ontology of Digital Physics. Erkenn, 82, (6), 2017, 1211–1231.
  • [5] Blass A., Gurevich Y., Algorithms: A quest for absolute definitions. Bulletin of the European Association for Theoretical Computer Science, 81, 2003, 195–225.
  • [6] Copeland B.J., What Is Computation? Synthese108 (3) 1996 335–359.
  • [7] Copeland B.J., The Broad Conception of Computation. American Behavioral Scientist, 40, (6), 1997, 690–716.
  • [8] Costa J.F., et al., A foundation for real recursive function theory. Annals of Pure and Applied Logic, 160, (3), 2009, 255–288.
  • [9] Cubitt T., et al., Undecidability of the Spectral Gap. Nature, 528 (7581), 2015, 207–211.
  • [10] Davies J., Anthropomorphism in science. EMBO reports, 11 (10), 2010, 721–721.
  • [11] Denning P.J., Computing is a Natural Science. Communications of the ACM, 50 (7), 2007, 13–18.
  • [12] Dodig-Crnkovic G., The Development of Models of Computation with Advances in Technology and Natural Sciences. In: Proceedings of The 6th AISB Symposium on Computing and Philosophy: The Scandal of Computation - What is Computation? (Editors: M. Bishop and Y.J. Erden). 2013, 1–8.
  • [13] Dodig-Crnkovic G., Müller V.C., A Dialogue Concerning Two World Systems: Info-Computational vs. Mechanistic. In: Information and Computation (Editors: M. Burgin and G. Dodig-Crnkovic). Singapore: World Scientific Publishing Co., 2011, 149–184.
  • [14] Floridi L., Against digital ontology. Synthese168 (1), 2009, 151–178.
  • [15] Floridi L., A defence of informational structural realism. Synthese, 161 (2), 2008, 219–253.
  • [16] Fredkin E., An introduction to digital philosophy. International Journal of Theoretical Physics, 42 (2), 2003, 189-247.
  • [17] French S., Ladyman J., In Defence of Ontic Structural Realism. In: Scientific Structuralism (Editors: A. Bokulich and P. Bokulich). Dordrecht: Springer Netherlands, 2011, 25–42.
  • [18] Heller M. et al., Noncommutative Unification of General Relativity and Quantum Mechanics. Journal of Mathematical Physics, 46 (12), 2005, 122501.
  • [19] Heller M., Sasin W., Noncommutative Unification of General Relativity and Quantum Mechanics. International Journal of Theoretical Physics, 38 (6), 1999, 1619–1642.
  • [20] Heller M., Dispute around sructural realism [Spór o realizm strukturalistyczny]. In: Filozofia i wszechświat: wybór pism. Kraków: TAiWPN UNIVERSITAS, 2006, 215–234.
  • [21] Horsman C. et al., When does a physical system compute? Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 470 (2169), 2014, 20140182–20140182.
  • [22] Koyré A., From the closed world to the infinite universe. Charleston S.C.: Forgotten Books, 2008.
  • [23] Kracher A., Imposing Order—The Varieties of Anthropomorphism. Studies in Science and Theology, 8, 2002, 239–261.
  • [24] Krzanowski R., Minimal Information Structural Realism. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (63), 2017, 59–75.
  • [25] Marciszewski W., Universe as a computer and eschata [Wszechświat jako komputer i sprawy ostateczne]. Computerworld, (9), 1999.
  • [26] Moore C., Recursion theory on the reals and continuous-time computation. Theoretical Computer Science, 162 (1), 1996, 23–44.
  • [27] Müller V.C., Pancomputationalism: Theory or Metaphor?. In: Philosophy computing and information science (Editors: R. Hagengruber and U. Riss). London: Pickering & Chattoo, 2014, 213–221.
  • [28] Mycka J., Continuous and discrete computation as an anthropomorphous and a physical concept of effective computation [Obliczenia dyskretne i ciągłe jako realizacja antropomorficznej i fizycznej koncepcji efektywnej obliczalności]. In: Światy matematyki: tworzenie czy odkrywanie? Księga pamiątkowa ofiarowana profesorowi Romanowi Murawskiemu (Editors: I. Bondecka- Krzykowska and J. Pogonowski). Poznań: Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza, 2010, 247–260.
  • [29] Pexton M., Emergence and interacting hierarchies in shock physics. Euro Jnl Phil Sci, 6 (1), 2015, 91–122.
  • [30] Piccinini G., Computation in Physical Systems. In: The Stanford Encyclopedia of Philosophy (Editor: E.N. Zalta). Metaphysics Research Lab Stanford University, 2017.
  • [31] Piccinini G., Physical computation: a mechanistic account. 2015.
  • [32] Piesko M., Uncalculable calculability [Nieobliczalna obliczalność]. Kraków: Copernicus Center Press 2011.
  • [33] Pour-El M.B., Richards J.I., Computability in Analysis and Physics. Cambridge: Cambridge University Press, 2016.
  • [34] Ringel Z., Kovrizhin D.L., Quantized gravitational responses the sign problem and quantum complexity. Science Advances, 3 (9), 2017, e1701758.
  • [35] Turing A.M., On Computable Numbers with an Application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42 (1), 1937, 230–265.
  • [36] Turing A.M., Systems of Logic Based on Ordinals. Proceedings of the London Mathematical Society, s2-45 (1), 1939, 161–228.
  • [37] Turing A.M., Computing Machinery and Intelligence. Mind, 59 (236), 1950, 433–460.
  • [38] Wolfram S., A new kind of science. Champaign IL: Wolfram Media, 2002.
  • [39] Zuse K., Calculating Space [Rechnender Raum]. Elektronische Datenverarbeitung, 8, 1967, 336–344.
  • [40] Zenil H., ed. A computable universe: understanding and exploring nature as computation. Singapore: World Scientific, 2013.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26d9754a-faa5-456b-8127-bc069353b1db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.