PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A vision to increase the availability of PET diagnostics in low- and medium-income countries by combining a low-cost modular J-PET tomograph with the 44Ti/44Sc generator

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objectives: This paper presents the prospects for increasing the availability of PET diagnostics by combining low-cost, lightweight and easily portable modular J-PET with the 44Ti/44Sc generator. Methods: J-PET is constructed based on the low-cost axially arranged plastic scintillators that may enable the construction of PET scanners 5 to 10 times less expensive compared to current PET systems, which are based on crystal scintillators. Development of the radionuclide 44Ti/44Sc generator with the 60-year half-lifetime would enable long-term onsite production of 44Sc labelled radiopharmaceuticals, eliminating the need for extensive and costly infrastructure typically associated with nuclear medicine. Presently applied 68Ge/68Ga generators with the 270 days half- -lifetime require renewal every year. The 44Ti/44Sc generator could, in principle, be purchased once every half century. Results: The lightweight and portable J-PET scanner, combined with the 44Ti/44Sc generator, can be deployed in remote and underserved regions, thus democratising access to advanced medical-imaging techniques. Conclusions: This novel concept shows the transformative potential of combining innovative J-PET technology with the 44Ti/44Sc generator to make advanced diagnostics more accessible and affordable worldwide, especially benefiting millions of patients in low- and medium-income countries, and driving further innovations in medical imaging.
Rocznik
Strony
55--62
Opis fizyczny
Bibliogr. 64 poz., rys.
Twórcy
  • Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University; Łojasiewicza 11, 30-348, Krakow, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
  • Marian Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
  • Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
  • Center for Theranostics, Jagiellonian University, Kraków, Poland
Bibliografia
  • 1. Alavi A, Werner TJ, Stępień EŁ, Moskal P. Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. Bio-Algorithms Med-Systems. 2021 Dec;17(4):203-12. doi: https://doi.org/10.1515/bams-2021-0186.
  • 2. Brownell G, Sweet W. Localization of brain tumors with positron emitters. Nucleonics. 1953 Nov;11(11):40-5.
  • 3. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA. A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology. 1975 Jan;114(1):89-98. doi: https://doi.org/10.1148/114.1.89.
  • 4. Jones T, Townsend D. History and future technical innovation in positron emission tomography. J Med Imag. 2017 Mar;4(1):011013. doi: https://doi.org/10.1117/1.JMI.4.1.011013.
  • 5. Clarke BN. PET radiopharmaceuticals: what’s new, what’s reimbursed, and what’s next? J Nucl Med Technol. 2018 Mar;46(1):12-6. doi: https://doi.org/10.2967/jnmt.117.205021.
  • 6. Ryan JL, Aaron VD, Sims JB. PET/MRI vs PET/CT in head and neck imaging: when, why, and how? Semin Ultrasound CT MRI. 2019 Oct;40(5):376-90. doi: https://doi.org/10.1053/j.sult.2019.07.002.
  • 7. Berger A. How does it work? Positron emission tomography. BMJ. 2003 Jun;326(7404):1449. doi: https://doi.org/10.1136/bmj.326.7404.1449.
  • 8. Basu S, Alavi A. Revolutionary impact of PET and PET-CT on the day-to-day practice of medicine and its great potential for improving future health care. Nucl Med Rev. 2009;12(1):1-13.
  • 9. Rischpler C, Nekolla SG, Dregely I, Schwaiger M. Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med. 2013 Mar;54(3):402-15. doi: https://doi.org/10.2967/jnumed.112.105353.
  • 10. Moskal P, Stępień EŁ. Prospects and clinical perspectives of total-body PET imaging using plastic scintillators. PET Clin. 2020 Oct;15(4):439-52. doi: https://doi.org/10.1016/j.cpet.2020.06.009.
  • 11. Vandenberghe S, Karakatsanis NA, Abi Akl M, Maebe J, Surti S, Dierckx RA, et al. The potential of a medium-cost long axial FOV PET system for nuclear medicine departments. Eur J Nucl Med Mol Imaging. 2023 Feb;50(3):652-60. doi: https://doi.org/10.1007/s00259-022-05981-9.
  • 12. IMAGINE - PET scanners (per 1 mil) [Internet]. International Atomic Energy Agency (IAEA); 2020 Sep. [updated 2020 Dec.; cited 2024 Nov 19]. Available from: https://humanhealth.iaea.org/HHW/DBStatistics/IMAGINEMaps4.html.
  • 13. Positron Emission tomography (per million population), total density. World Health Organization (WHO); [updated 2023 Jun.; cited 2024 Nov 19]. Available from: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/total-density-per-million-population-positron-emission-tomography.
  • 14. Moskal P, Salabura P, Silarski M, Smyrski J, Zdebik J, Zieliński M. Novel detector systems for the Positron Emission Tomography. Bio-Algorithms Med-Systems. 2011;7(2):73-8.
  • 15. Moskal P, Niedźwiecki S, Bednarski T, Czerwiński E, Kapłon Ł, Kubicz E, et al. Test of a single module of the J-PET scanner based on plastic scintillators. Nucl. Instrum. Meth. A. 2014 Nov;764:317-21. doi: https://doi.org/10.1016/j.nima.2014.07.052.
  • 16. Moskal P, Kowalski P, Shopa RY, Raczyński L, Baran J, Chug N, et al. Simulating NEMA characteristics of the modular total-body J-PET scanner - an economic total-body PET from plastic scintillators. Phys Med Biol. 2021 Sep;66(17):175015. doi: https://doi.org/10.1088/1361-6560/ac16bd.
  • 17. Van der Meulen NP, Strobel K, Lima TVM. New radionuclides and technological advances in SPECT and PET scanners. Cancers. 2021;13(24):6183. doi: https://doi.org/10.3390/cancers13246183.
  • 18. Kapłon Ł, Baran J, Chug N, Coussat A, Curceanu C, Czerwiński E, et al. Comparative studies of plastic scintillator strips with high technical attenuation length for the total-body J-PET scanner. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2023 Jun;1051:168186. doi:https://doi.org/10.1016/j.nima.2023.168186.
  • 19. Pałka M, Moskal P, Bednarski T, Białas P, Czerwiński E, Kapłon Ł, et al. A novel method based solely on field programmable gate array (FPGA) units enabling measurement of time and charge of analog signals in positron emission tomography (PET). Bio-Algorithms Med Systems. 2014;10(1):41-5. doi: https://doi.org/10.1515/bams-2013-0104.
  • 20. Pałka M, Strzempek P, Korcyl G, Bednarski T, Niedźwiecki S, Białas P, et al. Multichannel FPGA based MVT system for high precision time (20 ps RMS) and charge measurement. J Instrum. 2017 Aug;12(8):P08001. doi: https://doi.org/10.1088/1748-0221/12/08/P08001.
  • 21. Korcyl G, Moskal P, Bednarski T, Białas P, Czerwiński E, Kapłon Ł, et al. Trigger-less and reconfigurable data acquisition system for positron emission tomography. Bio-Algorithms Med Systems. 2014;10(1):37-40. doi: https://doi.org/10.1515/bams-2013-0115.
  • 22. Korcyl G, Białas P, Curceanu C, Czerwiński E, Dulski K, Flak B, et al. Evaluation of single-chip, real-time tomographic data processing on FPGA SoC devices. IEEE Trans Med Imaging. 2018 Nov;37(11):2526-35. doi: https://doi.org/10.1109/TMI.2018.2837741.
  • 23. Tayefi Ardebili F, Niedźwiecki S, Moskal P. Evaluation of Modular J-PET sensitivity. Bio-Algorithms Med Systems. 2023;19(1):132–8. doi: https:// doi.org/10.5604/01.3001.0054.1973.
  • 24. Moskal P, Baran J, Bass S, Choiński J, Chug N, Curceanu C, et al. Positronium image of the human brain in vivo. Sci. Adv. 2024 Sep;10(37):adp2840. doi: https://doi.org/10.1126/sciadv.adp2840.
  • 25. Moskal P. Positronium imaging. In: 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC); 2019 Oct 26-Nov 2; Manchester, UK. IEEE; 2020. p. 1-3. doi: https://doi. org/10.1109/NSS/MIC42101.2019.9059856.
  • 26. Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol. 2019 Mar;64(5):055017. doi: https://doi. org/10.1088/1361-6560/aafe20.
  • 27. Moskal P, Kisielewska D, Shopa RY, Bura Z, Chhokar J, Curceanu C, et al. Performance assessment of the 2γ positronium imaging with the total-body PET scanners. EJNMMI Phys. 2020 Jun;7(1):44. doi: https://doi.org/10.1186/s40658-020-00307-w.
  • 28. Moskal P, Kubicz E, Grudzień G, Czerwiński E, Dulski K, Leszczyński B, et al. Developing a novel positronium biomarker for cardiac myxoma imaging. EJNMMI Phys. 2023 Mar;10(1):22. doi: https://doi.org/10.1186/ s40658-023-00543-w.
  • 29. Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M, et al. Positronium imaging with the novel multiphoton PET scanner. Sci. Adv. 2021 Oct.;7(42):eabh4394. doi: https://doi.org/10.1126/sciadv.abh4394.
  • 30. Huang B, Li T, Ariño-Estrada G, Dulski K, Shopa RY, Moskal P, et al. SPLIT: Statistical positronium lifetime image reconstruction via time-thresholding. IEEE Trans Med Imaging. 2024 Jan;43(6):2148-58. doi: https://doi.org/10.1109/TMI.2024.3357659.
  • 31. Chen Z, Kao C-M, Huang H-H, An L. Enhanced positronium lifetime imaging through two-component reconstruction in time-of-flight positron emission tomography. Front Phys. 2024 Jul;12:1429344. doi: https://doi.org/10.3389/fphy.2024.1429344.
  • 32. Steinberger WM, Mercolli L, Breuer J, Sari H, Parzych S, Niedzwiecki S, et al. Positronium lifetime validation measurements using a long-axial field-of-view positron emission tomography scanner. EJNMMI Phys. 2024 Aug;11(1):76. doi: https://doi.org/10.1186/s40658-024-00678-4.
  • 33. Moskal P. Towards total-body modular PET for positronium and quantum entanglement imaging. In: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC); 2018 Nov 10-17; Sydney, NSW, Australia. IEEE; 2019. p. 1-4. doi: https://doi.org/10.1109/ NSSMIC.2018.8824622.
  • 34. Moskal P, Krawczyk N, Hiesmayr BC, Bała M, Curceanu C, Czerwiński E, et al. Feasibility studies of the polarization of photons beyond the optical wavelength regime with the J-PET detector. Eur Phys J C. 2018 Nov;78(11):970. doi: https://doi.org/10.1140/epjc/s10052-018-6461-1.
  • 35. Moskal P. Positronium and quantum entanglement imaging: a new trend in positron emission tomography. In: 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC); 2021 Oct 16-23; Piscataway, NJ, USA. IEEE; 2022. p. 1-3. doi: https://doi.org/10.1109/NSS/MIC44867.2021.9875524.
  • 36. Watts DP, Bordes J, Brown JR, Cherlin A, Newton R, Bashkanov M, et al. Photon quantum entanglement in the MeV regime and its application in PET imaging. Nat Commun. 2021 May;12(1):2646. doi: https://doi.org/10.1038/s41467-021-22907-5.
  • 37. Romanchek G, Shoop G, Abbaszadeh S. Application of quantum entanglement induced polarization for dual-positron and prompt gamma imaging. Bio-Algorithms Med-Systems. 2023;19(1):9-16. doi: https://doi.org/10.5604/01.3001.0054.1817.
  • 38. Ivashkin A, Abdurashitov D, Baranov A, Guber F, Morozov S, Musin S, et al. Testing entanglement of annihilation photons. Sci Rep. 2023 May;13(1):7559. doi: https://doi.org/10.1038/s41598-023-34767-8.
  • 39. Moskal P, Kumar D, Sharma S, Beyene EY, Chug N, Coussat A, et al. Non-maximal entanglement of photons from positron-electron annihilation demonstrated using a novel plastic PET scanner [Internet]. arXiv [Preprint]. 2024 [cited 2024 Nov 25]. Available from: https://doi. org/10.48550/arXiv.2407.08574.
  • 40. Parashari S, Bosnar D, Friščić I, Kožuljević AM, Kuncic Z, Žugec P, et al. Closing the door on the “puzzle of decoherence” of annihilation quanta. Phys Lett B. 2024 May;852:138628. doi: https://doi.org/10.1016/j. physletb.2024.138628.
  • 41. Caradonna P. Kinematic analysis of multiple Compton scattering in quantum-entangled two-photon systems. Ann Phys. 2024 Nov;470:169779. doi: https://doi.org/10.1016/j.aop.2024.169779.
  • 42. Moskal P. Positron emission tomography could be aided by entanglement. Phys. 2024 Sep;17:138. doi: https://doi.org/10.1103/Physics.17.138.
  • 43. Beyene EY, Das M, Durak-Kozica M, Korcyl G, Mryka W, Niedźwiecki S, et al. Exploration of simultaneous dual-isotope imaging with multiphoton modular J-PET scanner. Bio-Algorithms Med-Systems. 2023;19(1):101-8. doi: https://doi.org/10.5604/01.3001.0054.1940.
  • 44. Moskal P, Rundel O, Alfs D, Bednarski T, Białas P, Czerwiński E, et al. Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph. Phys Med Biol. 2016 Mar;61(5):2025-47. doi: https://doi.org/10.1088/0031-9155/61/5/2025.
  • 45. Eljen Technology. Physical constants of plastic scintillators [Internet]. Sweetwater (TX, USA): Eljen Technology; 2022 Dec [cited 2024 Jul 22]. Available from: https://eljentechnology.com/images/technical_library/ Physical_Constants_Plastic.pdf.
  • 46. Mao R, Wu C, Dai LE, Lu S. Crystal growth and scintillation properties of LSO and LYSO crystals. J Cryst Growth. 2013;368:97-100. doi: https://doi.org/10.1016/j.jcrysgro.2013.01.038.
  • 47. Moskal P, Gajos A, Mohammed M, Chhokar J, Chug N, Curceanu C, et al. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nat Commun. 2021 Sep;12(1):5658. doi: https://doi.org/10.1038/s41467-021-25905-9.
  • 48. Moskal P, Czerwiński E, Raj J, Bass SD, Beyene EY, Chug N, et al. Discrete symmetries tested at 10-4 precision using linear polarization of photons from positronium annihilations. Nat Commun. 2024 Jan;15(1):78. doi: https://doi.org/10.1038/s41467-023-44340-6.
  • 49. Sitarz M, Cussonneau JP, Matulewicz T, Haddad F. Radionuclide candidates for β+γ coincidence PET: an overview. Appl Radiat Isot. 2020 Jan;155:108898. doi: https://doi.org/10.1016/j.apradiso.2019.108898.
  • 50. Das M, Mryka W, Beyene EY, Parzych S, Sharma S, Stępień E, et al. Estimating the efficiency and purity for detecting annihilation and prompt photons for positronium imaging with J-PET using toy Monte Carlo simulation. Bio-Algorithms Med-Systems. 2023;19(1):87-95. doi: https://doi.org/10.5604/01.3001.0054.1938.
  • 51. Gajos A, Czerwiński E, Kamińska D, Moskal P, inventors; Jagiellonian University, assignee. Method for reconstructing multi-tracer metabolic and morphometric images and tomography system for multi-tracer metabolic and morphometric imaging. United States patent US 10339676. 2019 Jul 2 [cited 2024 Jul 22]. Available from: https://patents.google.com/patent/US10339676B2/en.
  • 52. Pratt EC, Lopez-Montes A, Volpe A, Crowley MJ, Carter LM, Mittal V, et al. Simultaneous quantitative imaging of two PET radiotracers via the detection of positron-electron annihilation and prompt gamma emissions. Nat Biomed Eng. 2023 Aug;7(8):1028-39. doi: https://doi.org/10.1038/ s41551-023-01060-y.
  • 53. Filosofov DV, Loktionova NS, Rösch F. A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim Acta. 2010 Mar;98(3):149-56. doi: https://doi.org/10.1524/ract.2010.1701.
  • 54. National Nuclear Data Center. NuDat 3.0 [Internet]. Upton (NY, USA): Brookhaven National Laboratory; date unknown [cited 2024 Jul 22]. Available from: http://www.nndc.bnl.gov/nudat3.
  • 55. Bresser PL, Vorster M, Sathekge MM. An overview of the developments and potential applications of 68Ga-labelled PET/CT hypoxia imaging. Ann Nucl Med. 2021 Feb;35:148-58. doi: https://doi.org/10.1007/s12149- 020-01563-7.
  • 56. García-Toraño E, Peyrés V, Roteta M, Sánchez-Cabezudo AI, Romero E, Martínez Ortega A. Standardisation and precise determination of the half-life of 44Sc. Appl Radiat Isot. 2016 Mar;109:314-8. doi: https://doi.org/10.1016/j.apradiso.2015.12.007.
  • 57. Pruszyński M, Majkowska-Pilip A, Loktionova NS, Eppard E, Roesch F. Radiolabeling of DOTATOC with the long-lived positron emitter 44Sc. Appl Radiat Isot. 2012 Jun;70(6):974-9. doi: https://doi.org/10.1016/j.apradiso.2012.03.005.
  • 58. Kerdjoudj R, Pniok M, Alliot C, Kubíček V, Havlíčková J, Rösch F, et al. Scandium(III) complexes of monophosphorus acid DOTA analogues: a thermodynamic and radiolabelling study with 44Sc from cyclotron and from a 44Ti/44Sc generator. Dalton Trans. 2016 Jan;45(4):1398-409. doi: https://doi.org/10.1039/C5DT04084A.
  • 59. Singh A, van der Meulen NP, Müller C, Klette I, Kulkarni HR, Türler A, et al. First-in-human PET/CT imaging of metastatic neuroendocrine neoplasms with cyclotron-produced 44Sc-DOTATOC: a proof-of-concept study. Cancer Biother Radiopharm. 2017 May;32(4):165-72. doi: https://doi.org/10.1089/cbr.2016.2173.
  • 60. Eppard E, de la Fuente A, Benešová M, Khawar A, Bundschuh RA, Gärtner FC, et al. Clinical translation and first in-human use of [44Sc] Sc-PSMA-617 for PET imaging of metastasized castrate-resistant prostate cancer. Theranostics. 2017;7(18):4359-69. doi: https://doi. org/10.7150/thno.20586.
  • 61. Khawar A, Eppard E, Sinnes JP, Roesch F, Ahmadzadehfar H, Kürpig S, et al. [44Sc]Sc-PSMA-617 biodistribution and dosimetry in patients with metastatic castration-resistant prostate carcinoma. Clin Nucl Med. 2018 May;43(5):323-30. doi: https://doi.org/10.1097/RLU.0000000000002003.
  • 62. Honarvar H, Müller C, Cohrs S, Haller S, Westerlund K, Eriksson Karlström A, et al. Evaluation of the first 44Sc-labeled Affibody molecule for imaging of HER2-expressing tumors. Nucl Med Biol. 2017 Feb;45:15-21. doi: https://doi.org/10.1016/j.nucmedbio.2016.10.004.
  • 63. Gajecki L, Marino CM, Cutler CS, Sanders VA. Evaluation of hydroxamate-based resins towards a more clinically viable 44Ti/44Sc radionuclide generator. Appl Radiat Isot. 2023 Feb;192:110588. doi: https://doi.org/10.1016/j.apradiso.2022.110588.
  • 64. Omofoye TS, Refinetti APC, Kizub D, Bond M. Value-based care in low- to middle-income countries: low-cost, context-specific imaging technologies to meet population health needs. J Am Coll Radiol. 2024 Aug;21(8):1162-5. doi: https://doi.org/10.1016/j.jacr.2024.04.003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26d473d0-0784-4d9d-88f2-1489eff6c4c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.