PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Simulation of Ionic Copolymers by Molecular Dynamics

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using GROMACS (a molecular dynamics package) we simulate ionic copolymers and compare the numerical results with those obtained by the lattice Monte Carlo simulations. While the results are qualitatively similar for both methods, the simulation times are significantly longer for the molecular dynamics simulations than those for the corresponding Monte Carlo runs
Twórcy
  • Faculty of Geographical and Geological Sciences, Adam Mickiewicz University ul. Krygowskiego 10, 61-680 Poznań, Poland
autor
  • Faculty of Polytechnic, The President Stanislaw Wojciechowski University School of Applied Sciences in Kalisz ul. Nowy Świat 4, 62-800 Kalisz, Poland
autor
  • Faculty of Physics, A. Mickiewicz University ul. Umultowska 85, 61-614 Poznan, Poland
Bibliografia
  • [1] L. Leibler, Theory of Microphase Separation in Block Copolymers, Macromolecules 13(6), 1602 (1980).
  • [2] A.E. Likhtman and A.N. Semenov, Stability of the OBDD structure for diblock copolymer melts in the strong segregation limit, Macromolecules 27(11), 3103 (1994).
  • [3] M.W. Matsen and M. Schick, Stable and unstable phases of a diblock copolymer melt, Phys. Rev. Lett. 72(16), 2660 (1994).
  • [4] M.W. Matsen and F.S. Bates, Block copolymer microstructures in the intermediate-segregation regime, J. Chem. Phys. 106, 2436 (1997).
  • [5] M. Takenaka, T. Wakada, S. Akasaka, S. Nishitsuji, K. Saijo, H. Shimizu, M.I. Kim, and H. Hasegawa, Orthorhombic Fddd Network in Diblock Copolymer Melts, Macromolecules 40(13), 4399 (2007).
  • [6] B. Miao and R.A. Wickham, Fluctuation effects and the stability of the Fddd network phase in diblock copolymer melts, J. Chem. Phys. 128, 054902 (2008).
  • [7] M.W. Matsen, The standard Gaussian model for block copolymer melts, J. Phys.: Condens. Matter 14(2), R21 (2002).
  • [8] K.A. Mauritz and R.B. Moore, State of Understanding of Nafion, Chem. Rev. 104, 4535 (2004).
  • [9] Michael Hickner, Hossein Ghassemi, Yu Seung Kim, Brian R Einsla, and James E McGrath, Alternative polymer systems for proton exchange membranes (PEMs), Chemical Reviews 104(10), 4587 (2004).
  • [10] M.J. Park and N.P. Balsara, Phase Behavior of Symmetric Sulfonated Block Copolymers, Macromolecules 41, 3678 (2008).
  • [11] Xin Wang, Sergey Yakovlev, Keith M. Beers, Moon J. Park, Scott a. Mullin, Kenneth H. Downing, and Nitash P. Balsara, On the Origin of Slow Changes in Ionic Conductivity of Model Block Copolymer Electrolyte Membranes in Contact with Humid Air, Macromolecules 43(12), 5306 (2010).
  • [12] Y. Rabin and J.F. Marko, Microphase separation in charged diblock copolymers: the weak segregation limit, Macromolecules 24(8), 2134 (1991).
  • [13] R. Kumar and M. Muthukumar, Microphase separation in polyelectrolytic diblock copolymer melt: weak segregation limit, J. Chem. Phys. 126, 214902 (2007).
  • [14] I. Nakamura, I., N.P. Balsara, and Z.-G. Wang, Thermodynamics of Ion-Containing Polymer Blends and Block Copolymers, Phys. Rev. Lett. 107, 198301 (2011).
  • [15] I. Nakamura, I. and Z.-G. Wang, Salt-doped block copolymers: ion distribution, domain spacing and effective [small chi] parameter, Soft Matter 8, 9356 (2012).
  • [16] P. Knychała, M. Banaszak, Park M. J., and N.P. Balsara, Microphase Separation in Sulfonated Block Copolymers Studied by Monte Carlo Simulations, Macromolecules 42(22), 8925 (2009).
  • [17] P. Knychała, M. Dzięcielski, M. Banaszak, and N.P. Balsara, Phase Behavior of Ionic Block Copolymers Studied by a Minimal Lattice Model with Short-Range Interactions, Macromolecules 46(14), 5724 (2013).
  • [18] P. Knychała, M. Banaszak, and N.P. Balsara, Effects of Composition on the Phase Behavior of Ion-Containing Block Copolymers Studied by a Minimal Lattice Model, Macromolecules 47(7), 2529 (2014).
  • [19] P. Knychała and M. Banaszak, Simulations on a swollen gyroid nanostructure in thin films relevant to systems of ionic block copolymers, European Physical Journal E 37, 67 (2014).
  • [20] J.E. Lennard-Jones, In On the Determination of Molecular Fields, volume 106, page 463 The Royal Society, 1924.
  • [21] S. Blonski, W. Brostow, and J. Kubat, Molecular-Dynamics Simulations of Stress-Relaxation in Metals and Polymers, Physical Review B 49, 6494 (1994).
  • [22] K. Kremer and G.S. Grest, ynamics of Entangled Linear Polymer Melts: A Molecular-Dynamics Simulation, J. Chem. Phys. 92, 5057 (1990).
  • [23] B. Hess, H. Bekker, H.J.C. Berendsen, and J.G.E.M Fraaije, LINCS: A Linear Constraint Solver for Molecular Simulations, Journal of Computational Chemistry 18, 1463 (1997).
  • [24] J.P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen, Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes, Journal of Computational Physics 23, 327 (1977).
  • [25] T. Darden, D. York, and L. Pedersen, Particle Mesh Ewald: An N-log(N) Method for Ewald Sums in Large Systems, J. Chem. Phys. 98, 10089 (1993).
  • [26] P. Ewald, Die Berechnung optischer und elektrostatischer Gitterpotentiale, Ann. Phys. 369, 253 (1921).
  • [27] M.P. Allen and D. Tildesley, Computer Simulation of Liquids, Clarendon Press Oxford, 1989.
  • [28] J. Kolafa and J.W. Perram, Cutoff Errors in the Ewald Summation Formulae for Point Charge Systems, Molecular Simulation 9, 351 (1992).
  • [29] S. Nose, A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods, J. Chem. Phys. 81, 511 (1984).
  • [30] W.G. Hoover, Canonical Dynamics: Equilibrium PhaseSpace Distribution, Phys. Rev. A 31, 1695 (1984).
  • [31] W.F. Van Gunsteren and H.J.C. Berendsen, A Leap-frog Algorithm for Stochastic Dynamics, Molecular Simulation 1, 173 (1988).
  • [32] L. Verlet, Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules, Physical Review 159, 98 (1967).
  • [33] Gromacs User Manual 4.0, ftp://ftp.gromacs.org/pub/manual/manual-4.0.pdf, Available: 30.08.2015.
  • [34] T.M. Beardsley and M.W. Matsen, Monte Carlo phase diagram for diblock copolymer melts, Eur. Phys. J. E 32(3), 155 (2010).
  • [35] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, and H.J.C. Berendsen, GROMACS: Fast, Flexible, and Free, J. Comput. Chem. 26, 1701 (2005).
  • [36] Tabulated Potentials, http://www.gromacs.org/Documenta tion/How-tos/Tabulated_Potentials, Available: 30.08.2015.
  • [37] User Specified non-bonded potentials in gromacs, http://www.gromacs.org/@api/deki/files/94/=gromacs_nb.pdf, Available:29.10.2016.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26d2a388-a6ac-4437-bf65-5289f762d97f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.