Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
By adapting the white noise theory, the quantum analogues of the (classical) Gross Laplacian and Lévy Laplacian, so called the quantum Gross Laplacian and quantum Lévy Laplacian, respectively, are introduced as the Laplacians acting on the spaces of generalized operators. Then the integral representations of the quantum Laplacians in terms of quantum white noise derivatives are studied. Correspondences of the classical Laplacians and quantum Laplacians are studied. The solutions of heat equations associated with the quantum Laplacians are obtained from a normal-ordered white noise differential equation.
Czasopismo
Rocznik
Tom
Strony
203--225
Opis fizyczny
Bibliogr. 41 poz.,
Twórcy
autor
- Centro Vito Volterra Facultà di Economica, Università di Tor Vergata, Via di Tor Vergata, 00133 Roma, Italy
autor
- Department of Mathematics, Higher School of Sciences and Technologies of Hammam-Sousse, Sousse University, Tunisia
autor
- Department of Mathematics, Research Institute of Mathematical Finance, Chungbuk National University, Cheongju 361-763, Korea
Bibliografia
- [1] L. Accardi, A. Barhoumi and H. Ouerdiane, A quantum approach to Laplace operators, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9 (2006), pp. 215-248.
- [2] L. Accardi and V. I. Bogachev, The Ornstein-Uhlenbeck process associated with the Lévy Laplacian and its Dirichlet form, Probab. Math. Statist. 17 (1997), pp. 95-114.
- [3] L. Accardi, P. Gibilisco and I. V. Volovich, Yang-Mills gauge fields as harmonic functions for the Lévy Laplacian, Russ. J. Math. Phys. 2 (1994), pp. 235-250.
- [4] L. Accardi, Y. G. Lu and I. Volovich, Nonlinear extensions of classical and quantum stochastic calculus and essentially infinite dimensional analysis, in: Probability Towards 2000, L. Accardi and C. Heyde (Eds.), Springer LN in Statistics 128 (1998), pp. 1-33. Proceedings of the Symposium: Probability Towards Two Thousand, Columbia University, New York, 2-6 October (1995), organized by the Institute of Italian Encyclopedia, the Italian Academy for Advanced Studies in America, the Department of Statistics and the Center for Applied Probability of Columbia University and the V. Volterra Center of the University of Roma Tor Vergata, Preprint Volterra No. 268 (1996).
- [5] L. Accardi, H. Ouerdiane and O. G. Smolyanov, Lévy Laplacian acting on operators, Russ. J. Math. Phys. 10 (2003), pp. 359-380.
- [6] L. Accardi, P. Roselli and O. G. Smolyanov, Brownian motion generated by the Lévy Laplacian, Math. Notes 54 (1993), pp. 1174-1177.
- [7] L. Accardi and O. G. Smolyanov, On Laplacians and traces, Conf. Semin. Mat. Univ. Bari 250 (1993), pp. 1-28.
- [8] W. Arveson, The heat flow of the CCR algebra, Bull. London Math. Soc. 34 (2002), pp. 73-83.
- [9] A. Barhoumi and H. Ouerdiane, Quantum Lévy-type Laplacian and associated stochastic differential equations, Banach Center Publ. 73 (2006), pp. 81-97.
- [10] D. M. Chung and U. C. Ji, Transformation groups on white noise functionals and their applications, Appl. Math. Optim. 37 (1998), pp. 205-223.
- [11] D. M. Chung, U. C. Ji and N. Obata, Quantum stochastic analysis via white noise operators in weighted Fock space, Rev. Math. Phys. 14 (2002), pp. 241-272.
- [12] D. M. Chung, U. C. Ji and K. Saitô, Cauchy problems associated with the Lévy Laplacian in white noise analysis, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), pp. 131-153.
- [13] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, Springer, 1999.
- [14] M. N. Feller, Infinite-dimensional elliptic equations and operators of Lévy type, Russian Math. Surveys 41 (1986), pp. 119-170.
- [15] L. Gross, Potential theory on Hilbert space, J. Funct. Anal. 1 (1967), pp. 123-181.
- [16] T. Hida, Analysis of Brownian Functionals, Carleton Math. Lect. Notes No. 13, Carleton University, Ottawa 1975.
- [17] T. Hida, H.-H. Kuo and N. Obata, Transformations for white noise functionals, J. Funct. Anal. 111 (1993), pp. 259-277.
- [18] T. Hida, N. Obata and K. Saitô, Infinite dimensional rotations and Laplacians in terms of white noise calculus, Nagoya Math. J. 128 (1992), pp. 65-93.
- [19] U. C. Ji and N. Obata, Quantum white noise calculus, in: Non-Commutativity, Infinite-Dimensionality and Probability at the Crossroads, N. Obata, T. Matsui and A. Hora (Eds.), World Scientific, 2002, pp. 143-191.
- [20] U. C. Ji and N. Obata, A unified characterization theorem in white noise theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), pp. 167-178.
- [21] U. C. Ji and N. Obata, Admissible white noise operators and their quantum white noise derivatives, in: Infinite Dimensional Harmonic Analysis III, H. Heyer, T. Hirai, T. Kawazoe, K. Saitô (Eds.), World Scientific, 2005, pp. 213-232.
- [22] U. C. Ji and N. Obata, Generalized white noise operator fields and quantum white noise derivatives, Sémin. Congr. Soc. Math. France 16 (2007), pp. 17-33.
- [23] U. C. Ji, N. Obata and H. Ouerdiane, Quantum Lévy Laplacian and associated heat equation, J. Funct. Anal. 249 (2007), pp. 31-54.
- [24] H.-H. Kuo, On Laplacian operators of generalized Brownian functionals, in: Stochastic Processes and Applications, K. Itô and T. Hida (Eds.), Lecture Notes in Math. Vol. 1203, Springer, 1986, pp. 119-128.
- [25] H.-H. Kuo, White Noise Distribution Theory, CRC Press, 1996.
- [26] H.-H. Kuo, N. Obata and K. Saitô, Lévy Laplacian of generalized functions on a nuclear space, J. Funct. Anal. 94 (1990), pp. 74-92.
- [27] R. Leandre and I. A. Volovich, The stochastic Lévy Laplacian and Yang-Mills equation on manifolds, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4 (2001), pp. 161-172.
- [28] Y. J. Lee, Applications of the Fourier-Wiener transform to differential equations on infinite dimensional spaces. I, Trans. Amer. Math. Soc. 262 (1980), pp. 259-283.
- [29] P. Lévy, Leçons d’analyse fonctionnelle, Gauthier-Villars, Paris 1922.
- [30] P. Lévy, Problèmes concrets d’analyse fonctionnelle, Gauthier-Villars, Paris 1951.
- [31] N. Obata, A characterization of the Lévy Laplacian in terms of infinite dimensional rotation groups, Nagoya Math. J. 118 (1990), pp. 111-132.
- [32] N. Obata, An analytic characterization of symbols of operators on white noise functionals, J. Math. Soc. Japan 45 (1993), pp. 421-445.
- [33] N. Obata, White Noise Calculus and Fock Space, Lecture Notes in Math. Vol. 1577, Springer, 1994.
- [34] N. Obata, Quadratic quantum white noises and Lévy Laplacian, Nonlinear Anal. 47 (2001), pp. 2437-2448.
- [35] M. A. Piech, Some regularity properties of diffusion processes on abstract Wiener space, J. Funct. Anal. 8 (1971), pp. 153-172.
- [36] R. J. Plymen, The Laplacian and the Dirac operator in infinitely many variables, Compos. Math. 41 (1980), pp. 137-152.
- [37] E. M. Polishchuk, Continual Means and Boundary Value Problems in Function Spaces, Birkhäuser, 1988.
- [38] J. Potthoff and L. Streit, A characterization of Hida distributions, J. Funct. Anal. 101 (1991), pp. 212-229.
- [39] K. Saitô, A stochastic process generated by the Lévy Laplacian, Acta Appl. Math. 63 (2000), pp. 363-373.
- [40] K. Saitô and A. H. Tsoi, The Lévy Laplacian acting on Poisson noise functionals, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), pp. 503-510.
- [41] Y. N. Zhang, Lévy Laplacian and Brownian particles in Hilbert spaces, J. Funct. Anal. 133 (1995), pp. 425-441.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26cd4ffb-f28e-499e-9a03-5416a3ae5a28