Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper describes implementation of the finite element method (FEM) to investigate crack growth problems in linear elastic fracture mechanics and the correlation of results with experimental and numerical data. The approach involved using two different software to compute stress intensity factors (SIFs), the crack propagation trajectory, and fatigue life estimation in two and three dimensions. According to the software, crack modeling might be run in various ways. The first is a developed source code program written in the Visual Fortran language, while the second is the widely used ANSYS Mechanical APDL 19.2 software. The fatigue crack propagation trajectory and the corresponding SIFs were predicted using these two software programs. The crack direction was investigated using the maximum circumferential stress theory, and the finite element (FE) analysis for fatigue crack growth was done for both software based on Paris's law. The predicted results in both software demonstrated the influence of holes on the crack growth trajectory and all associated stresses and strains. The study's findings agree with other experimental and numerical crack propagation studies presented in the literature that reveal similar crack propagation trajectory observations.
Wydawca
Czasopismo
Rocznik
Tom
Strony
285--297
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, Jazan University, P. O. Box 114, Jazan 45142, Saudi Arabia
Bibliografia
- [1] Al Laham S, Branch SI. Stress intensity factor and limit load handbook. Gloucester, Volume 3. UK: British Energy Generation Limited; 1998.
- [2] Tada H, Paris PC, Irwin GR, Tada H. The stress analysis of cracks handbook, Volume 130. New York
- [3] Sih, G.; Liebowitz, H. Mathematical Fundamentals. In Fracture, Academic Press New York: 1968; Vol. 2, pp. 67-190.
- [4] Hellan K. Introduction to fracture mechanics. McGraw-Hill; New York, 1985.
- [5] Barsom J, Rolfe S. Fracture and fatigue in structure: Application of fracture mechanics. Philadelphia, PA: American Society for Testing and Materials; 1999.
- [6] Hasan, S.; Akhtar, N. Dugdale model for three equal collinear straight cracks: An analytical approach. Theoretical and Applied Fracture Mechanics 2015, 78, 40-50.
- [7] Hasan, S.; Akhtar, N. Mathematical model for three equal collinear straight cracks: A modified Dugdale approach. Strength, Fracture and Complexity 2015, 9, 211-232.
- [8] Kumar S, Singh I, Mishra B, Singh A. New enrichments in XFEM to model dynamic crack response of 2-D elastic solids. Int J Impact Eng. 2016;87:198–211.
- [9] Pandey V, Singh I, Mishra B, Ahmad S, Rao AV, Kumar V. A new framework based on continuum damage mechanics and XFEM for high cycle fatigue crack growth: ASME Press; 2000.
- [10] Alshoaibi AM, Fageehi YA. 2D finite element simulation of mixed mode fatigue crack propagation for CTS specimen. J Mater Res Technol. 2020;9:7850–61.
- [11] Li X, Li H, Liu L, Liu Y, Ju M, Zhao J. Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method. Int J Rock Mech Min Sci. 2020;127:104219.
- [12] Leclerc W, Haddad H, Guessasma M. On the suitability of a discrete element method to simulate cracks initiation and propagation in heterogeneous media. Int J Solids Struct. 2017;108:98–114
- [13] Shao Y, Duan Q, Qiu S. Adaptive consistent elementfree Galerkin method for phase-field model of brittle fracture. Comput Mech. 2019;64:741–67.
- [14] Kanth SA, Harmain G, Jameel A. Modeling of nonlinear crack growth in steel and aluminum alloys by the element free galerkin method. Mater Today Proc. 2018;5:18805–14.
- [15] Huynh HD, Nguyen MN, Cusatis G, Tanaka S, Bui TQ. A polygonal XFEM with new numerical integration for linear elastic fracture mechanics. Eng Fract Mech. 2019;213:241–63.
- [16] Surendran M, Natarajan S, Palani G, Bordas SP. Linear smoothed extended finite element method for fatigue crack growth simulations. Eng Fract Mech. 2019;206:551–64.
- [17] Rozumek D, Marciniak Z, Lesiuk G, Correia J. Mixed mode I/II/III fatigue crack growth in S355 steel. Procedia Struct Integr. 2017;5:896–903.
- [18] Dekker R, van der Meer F, Maljaars J, Sluys L. A cohesive XFEM model for simulating fatigue crack growth under mixed-mode loading and overloading. Int J Numer Methods Eng. 2019;118:561–77.
- [19] Rezaei S, Wulfinghoff S, Reese S. Prediction of fracture and damage in micro/nano coating systems using cohesive zone elements. Int J Solids Struct. 2017;121:62–74.
- [20] Xu W, Wu X. Weight functions and strip-yield model analysis for three collinear cracks. Eng Fract Mech. 2012;85: 73–87.
- [21] Zhang W, Tabiei A. An efficient implementation of phase field method with explicit time integration. J Appl Comput Mech. 2020;6:373–82.
- [22] Dirik H, Yalçinkaya T. Crack path and life prediction under mixed mode cyclic variable amplitude loading through XFEM. Int J Fatigue. 2018;114:34–50.
- [23] Demir O, Ayhan AO, ˙Iriç S. A new specimen for mixed mode-I/II fracture tests: Modeling, experiments and criteria development. Eng Fract Mech. 2017;178:457–76.
- [24] Zhang R, Guo R. Determination of crack tip stress intensity factors by singular Voronoi cell finite element model. Eng Fract Mech. 2018;197:206–16.
- [25] Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng. 1999;45:601–20.
- [26] Bergara A, Dorado J, Martin-Meizoso A, Martínez-Esnaola J. Fatigue crack propagation in complex stress fields: Experiments and numerical simulations using the Extended Finite Element Method (XFEM). Int J Fatigue. 2017;103:112–21.
- [27] Demir O, Ayhan AO, Sedat I, Lekesiz H. Evaluation of mixed mode-I/II criteria for fatigue crack propagation using experiments and modeling. Chinese J Aeronaut 2018;31:1525–34.
- [28] Sajith S, Murthy K, Robi P. Experimental and numerical investigation of mixed mode fatigue crack growth models in aluminum 6061-T6. Int J Fatigue. 2020;130:105285.
- [29] Alshoaibi AM. Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading. Struct Eng Mech. 2010;35:283–99.
- [30] Alshoaibi AM. Comprehensive comparisons of two and three dimensional numerical estimation of stress intensity factors and crack propagation in linear elastic analysis.Int J Integr Eng. 2019;11:45–52.
- [31] Fageehi YA, Alshoaibi AM. Numerical simulation of mixed-mode fatigue crack growth for compact tension shear specimen. Adv Mater Sci Eng. 2020;1-14. https: //doi.org/10.1155/2020/5426831
- [32] Chen H,Wang Q, ZengW, Liu G, Sun J, He L, et al. Dynamic brittle crack propagation modeling using singular edge-based smoothed finite element method with local mesh rezoning. Eur J Mech A Solids 2019;76:208–23.
- [33] Gomes G, Miranda AC. Analysis of crack growth problems using the object-oriented program bemcracker2D. Frattura ed Integrità Strutturale 2018;12:67–85.
- [34] Fageehi YA, Alshoaibi AM. Nonplanar crack growth simulation of multiple cracks using finite element method. Adv Mater Sci Eng. 2020; 1-12.
- [35] Alshoaibi AM. Numerical modeling of crack growth under mixed-mode loading. Appl Sci. 2021;11:2975.
- [36] Paris P, Erdogan F. A critical analysis of crack propagation laws; J. Basic Eng. Dec 1963, 85(4): 528-53337.
- [37] Coffin L. Cyclic deformation and fatigue of metals. Fatigue and Endurance of Metals [Russian translation], Moscow; 1963. 257–72.
- [38] Wöhler A. Versuche zur Ermittlung der auf die Eisenbahnwagenachsen einwirkenden Kräfte und die Widerstandsfähigkeit der Wagen-Achsen. Zeitschrift für Bauwesen. 1860;10:583–614.
- [39] Bjørheim F. Practical comparison of crack meshing in ANSYS mechanical APDL 19.2. Norway: University of Stavanger; 2019.
- [40] Erdogan F, Sih G. On the crack extension in plates under plane loading and transverse shear. J Basic Eng. 1963;85:519–525.
- [41] Hussain M, Pu S, Underwood J. Strain energy release rate for a crack under combined mode I and mode II. In Proceedings of the Fracture analysis: Proceedings of the 1973 national symposium on fracture mechanics, Part II; West Conshohocken, PA, 1974.
- [42] Nuismer R. An energy release rate criterion for mixed mode fracture. Int J Fract. 1975;11:245–50.
- [43] Lee Y-L, Pan J, Hathaway R, Barkey M. Fatigue testing and analysis: Theory and practice, Volume 13. Burlington, Mass.: Butterworth-Heinemann,2005.
- [44] Irwin GR. Analysis of stresses and strains near the end of a crack transversing a plate. Trans ASME Ser E J Appl Mech. 1957;24:361–4.
- [45] Bashiri AH, Alshoaibi AM. Adaptive finite element prediction of fatigue life and crack path in 2D structural components. Metals. 2020;10:1316.
- [46] Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech. 1968;35:379–86.
- [47] Alshoaibi AM. Finite element simulation of fatigue life estimation and crack path prediction of two dimensional structures components. HKIE Trans. 2013;15:1–6.
- [48] Alshoaibi AM. An adaptive finite element framework for fatigue crack propagation under constant amplitude loading. Int J Appl Sci Eng. 2015;13:261–70.
- [49] Alshoaibi AM. A two dimensional simulation of crack propagation using adaptive finite element analysis. J Comput Appl Mech. 2018;49:335.
- [50] Alshoaibi AM, Hadi M, Ariffin A. Two-dimensional numerical estimation of stress intensity factors and crack propagation in linear elastic analysis. Struct Durability Health Monit. 2007;3:15.
- [51] Knowles JK, Sternberg E. On a class of conservation laws in linearized and finite elastostatics. California Institute of Technology, Pasadena Division of Engineering and Applied Science; 1971.
- [52] Liu Y, Li Y, Xie WJ. Modeling of multiple crack propagation in 2-D elastic solids by the fast multipole boundary element method. Eng Fract Mech. 2017;172:1–16.
- [53] Ingraffea AR, Grigoriu M. Probabilistic fracture mechanics: A validation of predictive capability. Cornell University Ithaca, NY, Department of Structural Engineering; 1990.
- [54] Ma W, Liu G, Wang W. A coupled extended meshfree – Smoothed meshfree method for crack growth simulation. Theor Appl Fract Mech. 2020;107:102572.
- [55] Bittencourt T, Wawrzynek P, Ingraffea A, Sousa J. Quasi-automatic simulation of crack propagation for 2D LEFM problems. Eng Fract Mech. 1996;55:321–34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26c8447d-2b92-4c4d-8500-c4b4a7c6bbb6