PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Modeling of Compression Test of Natural Fiber Composite Sections

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, there has been an increasing interest in composite materials reinforced with natural fibers. Due to the easy and cheap methods of obtaining raw materials, the possibility of recycling, biodegradability, production and processing safe for health, such materials can be a good alternative to composite materials reinforced with glass or carbon fibers. However, due to the lower mechanical properties of natural composites, their use as construction materials is still limited. Nevertheless, natural fiber composites have characteristics that can be used in structural applications as long as the mechanical behavior is well understood, reliable and predictable. The paper presents the results of numerical calculations of the compression process of a composite reinforced with a fabric made of flax and jute fibers (trade names: Biotex Flax 400g/cm2 and Biotex Jute 400 g/cm2) on a basis of Kinetix R240 epoxy resin. The data necessary for the numerical analysis were calculated in the Digimat software using the Double Inclusion micromechanical model, while the simulations of compression of the details were carried out in the Ansys software. Sections with different number of layers were tested. The results were compared with the experiment. Buckling forces obtained in the numerical analysis are nearby experimental results. Two types of C – section buckling modes were obtained and they consisted of two or three half-waves of buckling.
Słowa kluczowe
EN
jute   flax   Ansys   composite   Digimat  
Twórcy
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Materials Forming and Processing, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Materials Forming and Processing, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Materials Forming and Processing, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Joshi S.V., Drzal L.T., Mohanty A.K., Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A, Applied Science and Manufacturing, 2004, 35, 371-376.
  • 2. Sgriccia N., Hawley, M.C., Misra M. Characterization of natural fiber surfaces and natural fiber composites. Composites Part A, Applied Science and Manufacturing, 2008, 39, 1632-1637.
  • 3. Saheb D.N., Jog J.P. Natural fiber polymer composites, a review. Advances in Polymer Technology, 1999, 18, 351-363.
  • 4. Holbery J., Houston D. Natural-fiber-reinforced polymer composites in automotive applications. Jom, 2006, 58, 80-86.
  • 5. Malkapuram R., Kumar V., Negi Y.S. Recent development in natural fiber reinforced polypropylene composites. Journal of Reinforced Plastics and Composites, 2009, 28, 1169-1189.
  • 6. Hargitai H., Rácz I., Anandjiwala R.D. Development of hemp fiber reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 2008, 21,165-174.
  • 7. Faruk O., Bledzki A.K., Fink H.P., Sain M. Biocomposites reinforced with natural fibers, 2000–2010. Progress in Polymer Science, 2012, 37, 1552-1596.
  • 8. Klyosov A.A. Wood-plastic composites. John Wiley & Sons, 2007.
  • 9. Kalia S., Kaith B.S., Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites – a review. Polymer Engineering & Science, 2009, 49, 1253-1272.
  • 10. Bos H.L., Van Den Oever M.J.A., Peters O.C.J.J. Tensile and compressive properties of flax fibres for natural fibre reinforced composites. Journal of Materials Science, 2002, 37, 1683-1692.
  • 11. Pickering K.L., Beckermann G.W., Alam S.N., Foreman N.J. Optimising industrial hemp fibre for composites. Composites Part A, Applied Science and Manufacturing, 2007, 38,,461-468.
  • 12. Frącz W., Janowski G., Ryzińska G. Strength analysis of GFRP composite product taking into account its heterogenic structure for different reinforcements. Composites Theory and Practice, 2017, 17(2), 103-108.
  • 13. Frącz W., Janowski G. Influence of homogenization methods in prediction of strength properties for WPC composites. Applied Computer Science, 2017, 13(3), 77-89.
  • 14. Ryzińska G., Janowski G. Influence of RVE geometrical parameters on elastic response of woven flax-epoxy composite materials. Composites Theory and Practice, 2017, 20(2), 51-59.
  • 15. Sliseris J., Yan L., Kasal B. Numerical modelling of flax short fibre reinforced and flax fibre fabric reinforced polymer composites. Composites Part B, Engineering, 2016, 89, 143-154.
  • 16. Ahmad F., Bajpai, P.K. Evaluation of stiffness in a cellulose fiber reinforced epoxy laminates for structural applications. Experimental and finite element analysis. Defence Technology, 2018, 14(4), 278-286.
  • 17. Nirbhay, M., Misra, R.K., Dixit, A. Finite-element analysis of jute-and coir-fiber-reinforced hybrid composite multipanel plates. Mechanics of Composite Materials, 2015, 51(4), 505-520.
  • 18. Panamoottil S.M., Das R., Jayaraman K. Anisotropic continuum damage model for prediction of failure in flax/polypropylene fabric composites. Polymer Composites, 2016, 37(8), 2588-2597.
  • 19. Wang F., Li X., Zhang J., Li L., Keer L.M. Micromechanical modelling of the progressive failure in unidirectional composites reinforced with bamboo fibres. Mechanics of Materials, 2016, 94, 180-192.
  • 20. Zhong Y., Kureemun U., Lee H.P. Prediction of the mechanical behavior of flax polypropylene composites based on multi-scale finite element analysis. Journal of Materials Science, 2017, 52(9), 4957-4967.
  • 21. Bambach M.R. Compression strength of natural fibre composite plates and sections of flax, jute and hemp. Thin Wall Structure, 2017, 119, 103-113.
  • 22. Kinetix R240 Technical Data Sheet, www.atlcomposites.com
  • 23. Biotex Flax 400 g/m2 2x2 – Technical Data Sheet, www.compositesevolution.com
  • 24. Kabir M.M., Wang H., Lau K.T., Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites, An overview. Composites Part B, Engineering, 2012, 43(7), 2883-2892.
  • 25. Kalia S., Kaith, B.S., Kaur, I. Cellulose fibers, bio-and nano-polymer composites. Green chemistry and technology. Springer Science & Business Media, 2011.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26c84184-c851-4b5b-b8aa-28c4de9432b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.