Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fracture of laminated woven GFRP composite pressure vessels under combined low-velocity impact and internal pressure

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Dome curvatures of pressure vessels often sustain highest level of stresses when subjected to various loading conditions. This research is aimed at investigating the effect of dome geometrical shape (hemispherical, torispherical, and ellipsoidal domes) on mechanical deformation and crack length of laminated woven reinforced polymer (GRP) composite pressure vessels under low-velocity impact (LVI) (case one) or combination of LVI and internal pressure (case two). The study is based on finite element (FE) simulations with laboratory-based experimental validation studies. It was observed that the maximum vertical displacements () and crack length along the diameter of deformation (a) are both of lower magnitude in case one. Damage intensity and fracture differ for different combinations of loading. Only matrix breakage and debonding occurs in case one and fiber breakage occurs in case two. The dome geometric shapes used in this study were found to be invariant to both damage intensity and failure modes. Irrespective of the type of load applied, the magnitude of and crack length correlate with dome geometric shape as the maximum and the minimum occur in torispherical and hemispherical domes, respectively. The maximum and the minimum crack lengths also take place in torispherical and hemispherical domes, respectively.
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab., wykr.
  • College of Engineering and Science, Victoria University, Melbourne, VIC 8001, Australia
  • Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
  • College of Engineering and Science, Victoria University, Melbourne, VIC 8001, Australia
  • High Performance Cloud Computing Centre, Universiti Teknologi Petronas, Seri Iskandar, Perak, Malaysia
  • Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
  • Centre for Composites, Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia
  • College of Engineering and Science, Victoria University, Melbourne, VIC 8001, Australia
  • [1] V. Sánchez-Gálvez, F. Gálvez, R. Sancho, D. Cendón, A New analytical model to simulate high-speed impact onto composite materials targets, Int. J. Impact Eng. 108 (2017) 322–333.
  • [2] H. Saghafi, G. Minak, A. Zucchelli, Effect of preload on the impact response of curved composite panels, Compos. Part B Eng. 60 (2014) 74–81.
  • [3] A. Katunin, Stone impact damage identification in composite plates using modal data and quincunx wavelet analysis, Arch. Civ. Mech. Eng. 15 (2015) 251–261.
  • [4] J. Bieniaś, P. Jakubczak, B. Surowska, K. Dragan, Low-energy impact behaviour and damage characterization of carbon fibre reinforced polymer and aluminium hybrid laminates, Arch. Civ. Mech. Eng. 15 (2015) 925–932.
  • [5] C. Evci, M. Gülgeç, An experimental investigation on the impact response of composite materials, Int. J. Impact Eng. 43 (2012) 40–51.
  • [6] I. Telitchev, F. Schafer, E. Schneider, M. Lambert, Analysis of the fracture of gas-filled pressure vessels under hypervelocity impact, Int. J. Impact Eng. 23 (1999) 905–919.
  • [7] E.L. Christiansen, J.H. Kerr, J.P. Whitney, Debris cloud ablation In gas-filled pressure vessels, Int. J. Impact Eng. 20 (1997) 173–184.
  • [8] L.S. Kistler, A.M. Waas, Experiment and analysis on the response of curved laminated composite panels subjected to low velocity impact, Int. J. Impact Eng. 21 (1998) 711–736.
  • [9] K.S. Krishnamurthy, P. Mahajan, R.K. Mittal, Impact response and damage in laminated composite cylindrical shells, Compos. Struct. 59 (2003) 15–36.
  • [10] S. Kumar, B.N. Rao, B. Pradhan, Effect of impactor parameters and laminate characteristics on impact response and damage in curved composite laminates, J. Reinf. Plast. Compos. 26 (2007) 1273–1290.
  • [11] N.K. Gupta, Large deformation in thin-walled structures under impact or blast loading, Steel Constr. 4 (2011) 215–223.
  • [12] S. Xu, P.H. Chen, Prediction of low velocity impact damage In carbon/epoxy laminates, Procedia Eng. 67 (2013) 489–496.
  • [13] H. Zabala, L. Aretxabaleta, G. Castillo, J. Urien, J. Aurrekoetxea, Impact velocity effect on the delamination of woven carbon–epoxy plates subjected to low-velocity equienergetic impact loads, Compos. Sci. Technol. 94 (2014) 48–53.
  • [14] A.M.T. Arifin, S. Abdullah, M. Rafiquzzaman, R. Zulkifli, D.A. Wahab, A.K. Arifin, Investigation of the behaviour of a chopped strand mat/woven roving/foam-Klegecell composite lamination structure during Charpy testing, Mater. Des. 59 (2014) 475–485.
  • [15] K.L. Alderson, K.E. Evans, Failure mechanisms during the transverse loading of filament-wound pipes under static and low velocity impact conditions, Composites 23 (1991) 167–173.
  • [16] P. Tuğcu, Instability and ductile failure of thin cylindrical tubes under internal pressure impact, Int. J. Impact Eng. 28 (2003) 183–205.
  • [17] P. Gning, M. Tarfaoui, F. Collombet, L. Riou, P. Davies, Damage development in thick composite tubes under impact loading and influence on implosion pressure: experimental observations, Compos. Part B Eng. 36 (2005) 306–318.
  • [18] M. Hasanzadeh, V. Mottaghitalab, M. Rezaei, H. Babaei, Numerical and experimental investigations into the response of STF-treated fabric composites undergoing ballistic impact, Thin-Walled Struct. 119 (2017) 700–706.
  • [19] R. Udhayaraman, S.S. Mulay, Multi-scale approach based constitutive modelling of plain woven textile composites, Mech. Mater. 112 (2017) 172–192.
  • [20] L. Wang, J. Wu, C. Chen, C. Zheng, B. Li, C.J. Joshi, et al., Progressive failure analysis of 2D woven composites at the meso-micro scale, Compos. Struct. 178 (2017) 395–405.
  • [21] P. Francescato, A. Gillet, D. Leh, P. Saffré, Comparison of optimal design methods for type 3 high-pressure storage tanks, Compos. Struct. 94 (2012) 2087–2096.
  • [22] S. Gohari, Z.V. Sharifi, A novel explicit solution for twisting control of smart laminated cantilever composite plates/beams using inclined piezoelectric actuators, Compos. Struct. 161 (2017) 477–504.
  • [23] S. Gohari, S. Sharifi, Z. Vrcelj, New explicit solution for static shape control of smart laminated cantilever piezocomposite-hybrid plates/beams under thermo-electromechanical loads using piezoelectric actuators, Compos. Struct. 145 (2016) 89–112.
  • [24] S. Gohari, S. Sharifi, Z. Vrcelj, M.Y. Yahya, First-ply failure prediction of an unsymmetrical laminated ellipsoidal woven GFRP composite shell with incorporated surface-bounded sensors and internally pressurized, Compos. Part B Eng. 77 (2015) 502–518.
  • [25] S. Sharifi, S. Gohari, M. Sharifiteshnizi, Z. Vrcelj, Numerical and experimental study on mechanical strength of internally pressurized laminated woven composite shells incorporated with surface-bounded sensors, Compos. Part B Eng. 94 (2016) 224–237.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.