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1. INTRODUCTION

The use of Fiber Reinforced Polymers (FRPs) for the 

retroÞ tting of existing buildings has dramatically increased in 

the last decades. This technique has several advantages over 

standard retroÞ tting techniques, including ß exibility, effective-

ness and reversibility. Additionally, in the case of buildings in 

seismic regions, FRP strips do not signiÞ cantly increase the 

structural mass and the earthquake-induced inertia forces, 

contrary to conventional techniques such as external reinforce-

ments with steel plates, surface concrete coatings, and welded 

meshes. Laboratory tests aimed at assessing the effectiveness of 

FRPs in enhancing the mechanical performances of masonry 

structures have been recently carried out e.g. by Grande et 

al. [4] and Capozucca [5]. For an exhaustive and quite up-

dated overview of the experimental researches carried out on 

masonry structural elements reinforced by FRPs, readers are 

referred to [6].

So far, the layout of the reinforcing FRP strips on labora-

tory samples or real structures has been basically driven by the 

intuition, owing to the simplicity of the loading conditions, 

or by the intent of healing existing cracks. A more rigorous 

approach relying upon structural mechanics and optimization 

might be necessary under complex load conditions or geom-

etries. A preliminary attempt toward a mechanically sound 

design of the reinforcing path was made by Krevaikas et al. [7], 

who tried to identify on a rational basis the optimal layout of 

FRP strips on in-plane loaded masonry walls according to a 

strut-and-tie scheme. 

In this paper, the optimal layout of reinforcing material to 

be placed on an existing masonry element is obtained using a 

rigorous approach based on topology optimization. The mini-

mum amount (that is, the minimum cost) of reinforcement 

is sought, in order to keep the stress in the existing structure 

below a given threshold. In the optimization procedure pre-

sented hereafter, the stress over the masonry element must 

obey a homogenized strength criterion recently presented in 

[2]. Alternative choices for the objective function are possible, 

e.g., the highest tensile stress in the masonry element could be 

minimized, or the global stiffness (or the load bearing capacity) 

of the reinforced structure could be maximized.

The potentialities of the proposed approach are illustrated 

in Sec. 4 with reference to a technically meaningful case study. 

2. HOMOGENIZED MODEL

The homogenized masonry behavior at failure is obtained 

by means of a simple equilibrated limit analysis model pre-

sented in [2], suitable to obtain masonry macroscopic in-plane 

failure surfaces at a rather limited computational effort. 

The representative volume element Y (RVE, or elemen-

tary cell) depicted in Fig. 1 is considered. Y contains all the 

information necessary to describe the macroscopic behavior 

of the entire wall completely. If a running or header bond 

pattern is considered, as shown in Fig. 1, an elementary cell 

of rectangular shape can be conveniently adopted.

According to homogenization theory [8], averaged quan-

tities representing the macroscopic stress and strain tensors 

(E and , respectively) are deÞ ned:
 

  (1)

where A is the area of the 2D elementary cell,  and  stand 

for the local quantities (stresses and strains respectively) and 

<*> is the averaging operator.
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The local stress ( ) and displacement (u) Þ elds must fulÞ ll 

suitable periodicity conditions that read:

  (2)

where uper is the periodic part of the displacement Þ eld, y is 

any point in the local reference frame (Oy1y2), and Y is the 

boundary of the 2D RVE (see Fig. 1).

In this model, joints are reduced to interfaces of vanishing 

thickness. The units are discretized by means of a coarse mesh 

constituted by constant stress triangular elements (CST), as 

sketched in Fig. 1. In this way, and with the coarse discretiza-

tion adopted, 1/4 of the RVE is meshed through 6 CST ele-

ments, indicated in Fig. 1 as 1, 2, 3, 1’, 2’, 3’. The generalization 

of the symbols to the whole cell is straightforward. In principle, 

block failure can occur at the brick-to-brick interfaces.

From here onwards, the superscript (n) will indicate any 

stress component belonging to the n-th element. Accordingly, 

assuming the wall to undergo plane-stress conditions, the 

Cauchy stress tensor in the n-th CST element, (n), is char-

acterized by three non-vanishing components (n)
xx (horizontal 

stress), (n)
yy (vertical stress) and (n)

xy (shear stress).

Referring to the static approach of limit analysis [9], equi-

librium within any element is a-priori satisÞ ed, being the stress 

tensor element-wise constant (div  = 0). On the contrary, 

two equality constraints involving stress components in adja-

cent triangular elements have to be prescribed at any internal 

interface. Consider e.g. the interface between elements1 and 

2: denoting by  the ratio of the semi-length to the height of 

the brick (  = b/2a), as the stress vector must be continuous 

from an element to the other, the constraints  (2)
xx =  (1)

xx +   

( (1)
xy – (2)

xy ) and  (2)
yy =  (1)

yy +  -1( (1)
xy – (2)

xy )  and  hold. Similar 

equations must be written at the other interfaces, which are 

globally 28: a total of 56 equilibrium equations is obtained. 

Anti-periodicity constrains for the stress vector are pre-

scribed on the couples of triangles 1-6, 1’-6’, 7-12, 7’-12’, 

1-7’, 3-9’, 4-10’, 6-12’, leading to additional 16 equalities. 

For instance, referring to couple 1-6, stress anti-periodicity 

amounts at setting  (1)
xx =  (6)

xx   and   (1)
xy =  (6)

xy.

Not all of the equations, however, are linearly independ-

ent. In particular, it can be shown that the corner elements 

1, 6, 7 and 12 provide 4 linearly dependent equations for the 

shear stress. 

To summarize, the optimization problem involves 73 un-

knowns (i.e. 72 stress components, three for each triangular 

element, and the load multiplier ), 68 linearly independent 

equations, and a set of inequality constraints representing 

the yield conditions at the interfaces and involving unknown 

stress components. In the framework of the lower bound 

theorem of limit analysis, the objective function is simply the 

load multiplier. 

To estimate a single point of the homogenized yield 

domain, it is thus necessary to solve the following linear pro-

gramming (LP) problem:

  (3)

The symbols used in equation (3) have the following 

meaning:

– ,  and  indicate the components of any unit vector n  , 

see Fig. 2, in the space of the macroscopic in-plane stresses; 

– Ai is the area of the i-th element (ab/8 or ab/16);

– X is a 73 × 1 array, gathering all the LP problem unknowns 

(element stress components and load multiplier);

– AI
eq  X = bI

eq is a set of linear equations collecting the equi-

librium constraints at the interfaces. AI
eq is a 56 × 73 matrix 

and bI
eq  is a 56 × 1 array with entries equal to zero;

–  Aap
eq  X = bap

eq collects the anti-periodicity conditions and it 

is therefore a set of 16 equations (some of them linearly 

dependent). Thus  Aap
eq   is a 16 × 73 matrix and bap

eq is a 

16 × 1 array with entries equal to zero; 

– f iE ( (i)
xx, 

(i)
yy, 

(i)
xy )  0  is a set of possibly non-linear inequali-

ties constraints, representing the failure surface adopted 

for the i-th element;

–  f i
I (

(i)
I, 

(i)
I  )  0  i = 1, …, 32 plays the role of  f i

E for the 

interfaces, with (i)
I  and (i)

I  denoting the normal and shear 

stress acting on the i-th interface, respectively.

The solution of the optimization problem (3) allows a 

point on the homogenized failure surface to be determined, 

having coordinates xx = , yy =  and xy = . Tradition-

ally, sections of the masonry failure surface are obtained assum-

ing a Þ xed angle  of the bed joints to the macroscopic principal 

horizontal stress ( 11) and varying the angle  = tan-1
22/ 11, 

being 22 the macroscopic vertical stress. The components of 

vector n  can be expressed as:

Two typologies of interfaces are present in the model, 

namely brick-to-brick interfaces and mortar joints. Whereas 

non-linear failure surfaces may be easily dealt with within a 

LP scheme (abundant literature is available on this topic, see 

e.g. [10]), here bricks are assumed to be inÞ nitely strong and 

joints are reduced to interfaces with a Mohr-Coulomb failure 

criterion, with tension cutoff and linear cap in compression. 

Hence, constituent material failure surfaces are inherently 

linear, and no linearization procedure is needed.

Fig. 1 The micro-mechanical model proposed. Subdivision of the REV into 

24 CST triangular elements (and 1/4 into 6 elements) and anti-periodicity 

of the micro-stress Þ eld
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  (4)

3. TOPOLOGY OPTIMIZATION PROBLEM

Consider any masonry element subjected to prescribed 

loads and constraints, subjected to a plane state of stress. As-

suming perfect bonding, the presence of any Þ ber-reinforcing 

layer can be taken into account adding in-plane stiffness to the 

underlying brickwork. A Þ nite element discretization of the 

optimization problem will be derived. Extending the frame-

work of conventional approaches for topology optimization 

(see e.g. [11, 12 ]), one may deÞ ne two arrays of design vari-

ables, i.e. xi and , representing the (normalized) density of the 

reinforcement and the orientation of the Þ bers at any element, 

respectively. The stiffness of the reinforced structure depends 

on the design variables according to the following expression:

  (5)

being KTi the plane stress stiffness matrix of the i-th 

Þ nite element, modeling both masonry and reinforcement. 

KTi includes the contribution of the underlying masonry 

structure, KMi, along with the term accounting for the Þ ber-

reinforcement, KRi. KRi depends on i, and is scaled to xi 

through the so-called SIMP law that implements a penalization 

with exponent p, see [1]. The proposed approach allows any 

optimization problem to be dealt with resorting to continuous 

functions for the density unknowns 0 xi  1. The stiffness 

penalization at intermediate density is able to steer the solu-

tion towards the expected extreme values of the range. The 

terms KMi and KRi are both computed taking into account 

the orthotropic features of the materials. To model a Þ ber-

reinforcement exhibiting a prevailing stiffness along a single 

direction, a vanishing elastic modulus is considered in the 

direction perpendicular to the Þ bers. The possible orientations 

of the Þ bers, i, are unconstrained. 

The optimal layout of Þ ber-reinforcement is deÞ ned by 

the distribution of reinforcing material, along with the relevant 

orientation of its Þ bers, that minimize the weight of the added 

phase and make the stress regime throughout the whole under-

lying masonry structure admissible according to the criterion 

deÞ ned in Sec. 2. Thus, the discrete version of the topology 

optimization problem can be written as: Find

  (6)

The objective function in the above expression is the 

weight of the reinforcement, being Ai the area of the i-th 

Þ nite element, xi the corresponding density unknown, and n 

the number of Þ nite elements. Recall that any element is also 

related to the additional optimization unknown i, deÞ ning 

the local orientation of the Þ bers. Reference is also made to 

free material optimization for additional details on the optimal 

design involving anisotropic materials, see e.g. [13]. The Þ rst 

constraint of the optimization problem enforces the equilib-

rium equation for the reinforced structural element in weak 

form, within the framework of a classical displacement-based 

formulation. The global stiffness matrix may be split into two 

contributions related to the underlying masonry element KM 

and the overlying Þ ber-reinforcement KR, in full agreement 

with the above discussion on element-wise contributions. The 

second requirement consists of a sets of local constraints that 

enforce the strength criterion presented in the Sec. 2, involv-

ing the components of the stress tensor in the masonry layer, 

gathered into the array Mj when referring to the j-th element. 

This array can be computed at the centroid of each Þ nite ele-

ment, moving from the displacement and strain Þ elds derived 

at equilibrium by means of a post-processing computation. All 

the inequalities prescribed by the adopted strength criteria are 

evaluated for each Þ nite element to be constrained, whereas only 

a few are implemented as effective enforcements according to 

the selection strategy presented in [11]. This approach allows 

the number of active constraints to be signiÞ cantly reduced, as a 

very limited set of local enforcements (m << n) may be selected 

and included in the optimization to provide an affordable and 

efÞ cient solution of the multi-constrained minimization prob-

lem. Since stress-constraints are enforced on a Þ xed phase of 

the domain, i.e. the masonry layer, the well-known singularity 

problem does not affect the minimization procedure, and no 

relaxation is required to handle stress constraints (see e.g. [14]).

The presented optimization problem is solved by means of 

mathematical programming, see [15], and requires the sensi-

tivity analysis of the objective function and the constraints on 

the two sets of variables, i.e. xi and i. At the beginning of the 

minimization process, the structural element is assumed to 

be evenly reinforced, which means xi = 1 all over the design 

domain. The initial orientation of the Þ bers is assumed to co-

incide with the direction of the maximum principal stresses in 

the unreinforced masonry element. Indeed, the optimal Þ ber 

direction is strictly related, but not equal, to the direction of 

the tensile principal stresses of the underlying element. This 

will be further discussed in the next section. 

4. NUMERICAL SIMULATIONS

A deep beam of length L = 3 m, height H = 3 m and 

thickness s = 250 mm, made of header bond brickwork is con-

sidered (Fig. 3a). The wall is supposed to be made of standard 

Fig. 2 General in-plane load: geometrical interpretation of the multiplier 

 in the homogenized stress space ( xx = n (1), yy = n (2) and xy = n (3))
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Italian bricks, of dimensions 250 120 55 mm3 (length 

thickness height). The 10 mm thick joints are reduced to 

interfaces according to the homogenization model. The wall is 

Þ xed to the ground by means of two rigid regions at the corners 

of the lower side, enforcing vanishing displacements along 

both the horizontal and the vertical direction, and vanishing 

rotations. A vertical force P is distributed along the central part 

of the upper side of the wall. The resultant of the applied load 

is taken equal to 230 kN.

According to data available in the literature regarding simi-

lar panels tested up to failure [4], the Young modulus of the 

brickwork along the horizontal direction E1 is taken equal to 

1412 MPa, whereas the elastic modulus along the vertical direc-

tion E2 is given a value of 1050 MPa. Additionally, the Poisson 

ratio is 0.1762 and the in-plane shear modulus G12 = 367 MPa.

The presented formulation for the topology optimization of 

Þ ber-reinforcement is implemented with the aim of distributing 

and orienting the minimum amount of material for an overlying 

layer of thickness tF = 0.2 mm bonded to both sides of the wall, 

with a Young modulus E = 160 GPa along the Þ ber direction. 

The stress state in the reinforced masonry wall must 

comply with the strength criterion presented in the Section 

3. The mechanical properties of the constituent materials 

within the homogenization model are as follows: bricks are 

inÞ nitely resistant; joints are reduced to interfaces obeying a 

Mohr-Coulomb failure criterion (cohesion = 0.1 MPa, friction 

angle = 30°) with tension cutoff (0.2 MPa) and a linearized 

compression cap (compression strength = 4 MPa, slope of the 

linearized cap = 60°).

Homogenized failure surface sections at different orienta-

tions of the bed joints to the principal stress 11 are depicted in 

Fig. 3b. Note that the behavior of the model in the tension-

tension region is crucial, since optimization performed at a 

structural level provides reinforcement when the principal 

stresses in masonry exceed the tensile strength. Finally, it is 

worth remembering that bricks are assembled in header bond, 

with their maximum dimension (250 mm) disposed parallel to 

the side L of the wall, so that the brick length-to-height ratio is 

equal to 2.18. As a consequence, the orthotropy ratio, deÞ ned 

as the ratio of the horizontal to the vertical strength, sensibly 

decreases respect to a running bond pattern.

 (a) (b)

Fig. 3 Geometry of the analyzed deep beam (a) and masonry homogenized 

failure surface sections at different orientations of the bed joints to the 

material axes (b)

The wall is discretized by means of about 4000 square 

Þ nite elements. The minimum weight solution, admissible 

with respect to the selected masonry strength criterion, is 

summarized in Fig. 4. In particular, Fig. 4a shows the optimal 

distribution of Þ ber-reinforcing material (black regions stand 

for Þ ber-reinforced zones), whereas the optimal orientation 

of the Þ bers is depicted in Fig. 4b. Looking for regions which 

share a nearly homogeneous distribution in terms of Þ ber 

orientation, one may easily identify the optimal layout of FRP 

strips to be placed on the masonry panel. A horizontal strip 

should be placed at the bottom of the specimen to reduce 

the horizontal tensile stresses. Additionally, V-shaped stripes 

should be conveniently introduced to transfer a fraction of 

the vertical load carried by this highly-stressed region toward 

the supports. Finally, in Fig. 5a contours of the difference be-

tween the optimal orientation of the reinforcing Þ bers and the 

direction of the maximum principal stress in the unreinforced 

element (measured in sexagesimal degrees) is plotted. Fig. 5b 

shows the tensile stress acting in the Þ ber reinforcement. 

As one may easily see, the optimal orientation of the Þ bers 

is related to (but not coincident with) the direction of the 

tensile principal stresses in the underlying panel, which may 

be therefore conveniently implemented to deÞ ne the starting 

values of the entries of array  in the optimization procedure.

The stress level in the FRP strips is compatible with the 

limit shear strength associated with FRP delamination, as 

stated by the Italian code CNR DT 200, meaning that an 

elastic hypothesis without limitations on the interfacial stresses 

between FRP and masonry material is, in this case, adequate.

 (a) (b)

Fig. 4 Optimal distribution (a) and orientation (b) of the Þ ber-reinforcement

5. CONCLUSIONS

An original procedure was proposed to derive the optimal 

layout of the Þ ber reinforcements to be applied to masonry 

structures, based on a rigorous topology optimization ap-

proach. Unlike existing procedures [7], in the proposed ap-

proach the layout of the reinforcement is completely free and 

no a-priori assumptions is made regarding the geometry of 

the reinforcing array.

 (a) (b)

Fig. 5 (a) Difference between the optimal orientation of the Þ bers and 

the direction of the maximum (tensile) principal stress in the underlying 

brickwork (angles measured in sexagesimal degrees), (b) Tensile stress 

in the FRP elements (in MPa)

The layout obtained in the example shown in Section 4 is 

in full agreement with the results given by energy-based opti-

mization procedures to deÞ ne equilibrated truss-like models, 

which can be interpreted as strut-and-tie models in concrete 

elements, see e.g. [15].
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In many practical situations the layout of the reinforcing 

FRP to be placed on existing structures is basically driven by 

the intuition, owing to the simplicity of the loading conditions, 

or by the intent of healing existing cracks. Under complex load 

conditions, or in presence of complex geometries, the proce-

dure proposed in this work might turn out to be particularly 

appropriate for its ß exibility. Existing cracks might also be taken 

into account in deÞ ning the geometry of the design domain. 

Also the choice of the objective function and the constraints 

can be modiÞ ed, to comply with any requirements of the 

designer. For instance, the global structural stiffness, or its 

bearing capacity, could be maximized for a prescribed quantity 

of reinforcement, keeping the stress in the masonry element 

below a certain threshold.

Future perspectives of the research include the extension 

of the extension of the proposed procedure to multidirectional 

reinforcements, which are often employed in practical applica-

tions. Also, different strength criteria available in the literature 

for unreinforced masonry will be taken into account, and their 

effect on the optimal layout of the reinforcement will be as-

sessed. Another important issue that has to be dealt with in the 

prosecution of the research is the control of the inter-laminar 

shear stresses, which are responsible for the debonding of the 

reinforcing layers: these stresses require structural theories 

more accurate than the plane stress analysis employed so far 

to be captured. Finally, the experimental validation of the ef-

fectiveness of the numerically obtained reinforcing layouts is 

envisaged.

Abstract

The optimal layout of the Þ ber reinforcement to be placed 

on existing masonry structures is determined using topology 

optimization [1]. The problem can be conveniently formulated 

as the minimization of the amount of reinforcement required 

to keep tensile stresses in any masonry element below a pre-

scribed threshold. Strength criteria for masonry elements are 

provided by means of a recently presented lower bound limit 

analysis homogenization model [2], relying into a discretiza-
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tion of one-fourth of the unit cell by six CST elements. The 

macroscopic strength domain of masonry can be obtained in 

closed form, thanks to the limited number of variables in-

volved. A multi-constrained discrete formulation that locally 

controls the stress Þ eld over the whole design domain [3] is 

adopted. The contribution presents some preliminary numeri-

cal results addressing the Þ ber-reinforcement of a benchmark 

masonry wall.


