Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the framework of 3D elasticity theory, the static behavior of functionally graded viscoelastic cylindrical panels with piezoelectric layers under electro-mechanical loads is investigated. The viscoelastic material is modeled using Boltzmann's integral model, and its Poisson's ratio is constant, and for its time-dependent Young’s modulus, spatially, the power distribution in the radial direction is considered. Modulus time changes are also expressed using the Prony series. For simply supported edges, the state space method and Fourier expansion, and for other boundary conditions, the semi-analytical approach by the state space differential quadrature method (DQM) are used. Equations of motion are solved in the Laplace domain and by the Laplace inverse technique, results are transferred back to the time domain numerically. Also, the results of this research have been validated with other similar research. Finally, the effect of different parameters such as the type of supports, the relaxation time constant, thickness of the piezoelectric layer, and other important parameters on the static response of the panel have been investigated. Results demonstrate that if the ratio of the total layer thickness to the piezoelectric thickness exceeds a specified value, the effect of the thickness of the piezoelectric layer on mechanical behavior can be disregarded. Furthermore, when relaxation time constant increases, the amount of stress remains constant for a constant thickness and equals the amount of stress in the elastic panel. However, the amount of displacement decreases.
Czasopismo
Rocznik
Tom
Strony
art. no. e10, 2024
Opis fizyczny
Bibliogr. 56 poz., rys., wykr.
Twórcy
autor
- Department of Mechanical Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran 14115-143, Iran
autor
- Department of Mechanical Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran 14115-143, Iran
Bibliografia
- 1. Ramteke PM, Panda SK. Nonlinear static and dynamic (deflection/stress) responses of porous functionally graded shell paneland experimental validation. Proceed Instit Mech Eng Part C J Mech Eng Sci. 2023. https://doi.org/10.1177/09544062231155099.
- 2. Monge JC, Mantari JL. 3D elasticity numerical solution for the static behavior of FGM shells. Eng Struct. 2020. https://doi.org/10.1016/j.engstruct.2019.110159.
- 3. Khoa ND, Thiem HT, Duc ND. Nonlinear buckling and post-buckling of imperfect piezoelectric S-FGM circular cylindrical shells with metal–ceramic–metal layers in thermal environment using Reddy’s third-order shear deformation shell theory. Mech Adv Mater Struct. 2019;26(3):248–59. https://doi.org/10.1080/15376494.2017.1341583.
- 4. Arefi M, Mannani S, Collini L. Electro-magneto-mechanical formulation of a sandwich shell subjected to electro-magneto-mechanical considering thickness stretching. Arch Civil Mech Eng. 2022;22(4):196.
- 5. Shivashankar P, Gopalakrishnan S. Review on the use of piezo-electric materials for active vibration, noise, and flow control. Smart Mater Struct. 2020. https://doi.org/10.1088/1361-665X/ab7541.
- 6. Sobhy M. Piezoelectric bending of GPL-reinforced annular and circular sandwich nanoplates with FG porous core integrated with sensor and actuator using DQM. Arch Civil Mech Eng.2021. https://doi.org/10.1007/s43452-021-00231-5.
- 7. Aragh BS, Yas M. Three-dimensional free vibration of functionally graded fiber orientation and volume fraction cylindrical panels. Mater Des. 2010;31:4543–52. https://doi.org/10.1016/j.matdes.2010.03.055.
- 8. Al Jahwari F, Naguib HE. Analysis and homogenization of functionally graded viscoelastic porous structures with a higher order plate theory and statistical based model of cellular distribution. Appl Math Model. 2016;40:2190–205. https://doi.org/10.1016/j.apm.2015.09.038.
- 9. Bilasse M, Oguamanam D. Forced harmonic response of sandwich plates with viscoelastic core using reduced-order model. Compos Struct. 2013;105:311–8. https:// doi. org/ 10. 1016/j.compstruct.2013.05.042.
- 10. Li L, Hu Y, Wang X. Harmonic response calculation of viscoelastic structures using classical normal modes: An iterative method. Comp Struct. 2014;133:39–50. https://doi.org/10.1016/j.compstruc.2013.11.009.
- 11. Borjalilou V, Asghari M. Mathematical modeling of anisotropic hyperelastic cylindrical thick shells by incorporating thickness deformation and compressibility with application to arterial walls. Int J Struct Stab Dyn. 2022;22(13):2250141.
- 12. Temel B, Yildirim S, Tutuncu N. Elastic and viscoelastic response of heterogeneous annular structures under arbitrary transient pressure. Int J Mech Sci. 2014;89:78–83. https://doi.org/10.1016/j.ijmecsci.2014.08.021.
- 13. Sarparast H, Alibeigloo A, Borjalilou V, Koochakianfard O. Forced and free vibrational analysis of viscoelastic nanotubes conveying fluid subjected to moving load in hygro-thermo-magnetic environments with surface effects. Arch Civil Mech Eng. 2022;22(4):172.
- 14. Liang X, Deng Y, Cao Z, Jiang X, Wang T, Ruan Y, Zha X.Three-dimensional dynamics of functionally graded piezoelectric cylindrical panels by a semi-analytical approach. Compos Struct. 2019;226: 111176.
- 15. Gharib A, Salehi M, Fazeli S. Deflection control of functionally graded material beams with bonded piezoelectric sensors and actuators. Mater Sci Eng. 2008;498:110–4.
- 16. Behjat B, Salehi M, Armin A, Sadighi M, Abbasi M. Static and dynamic analysis of functionally graded piezoelectric plates under mechanical and electrical loading. Scie Iran.2011;18:986–94.
- 17. Alashti RA, Khorsand M. Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential quadrature method. Int J Press Vess Pip.2011;88:167–80. https://doi.org/10.1016/j.ijpvp.2011.06.001.
- 18. Javanbakht M, Daneshmehr A, Shakeri M, Nateghi A. The dynamic analysis of the functionally graded piezoelectric (FGP)shell panel based on three-dimensional elasticity theory. Appl Math Model. 2012;36:5320–33. https://doi.org/10.1016/j.apm.2011.12.022.
- 19. Żur KK, Farajpour A, Lim CW, Jankowski P. On the nonlinear dynamics of porous composite nanobeams connected with fullerenes. Compos Struct. 2021;274: 114356.
- 20. Ouakad HM, Żur KK. On the snap-through buckling analysis of electrostatic shallow arch micro-actuator via meshless Galerkin decomposition technique. Eng Anal Boundary Elem.2022;134:388–97.
- 21. He X, Liew K, Ng T, Sivashanker S. A FEM model for the active control of curved FGM shells using piezoelectric sensor/actuator layers. Int J Num Meth Eng. 2002;54:853–70.
- 22. Ding HX, She GL. Nonlinear resonance of axially moving graphene platelet-reinforced metal foam cylindrical shells with geometric imperfection. Arch Civil Mech Eng. 2023;23(2):97.
- 23. Jankowski P, Żur KK, Kim J, Lim CW, Reddy JN. On the piezo-electric effect on stability of symmetric FGM porous nanobeams. Compos Struct. 2021. https://doi.org/10.1016/j.compstruct.2021.113880.
- 24. Zhou L, Li X, Li M, Żur KK. The smoothed finite element method for time-dependent mechanical responses of MEE materials and structures around Curie temperature. Comput Methods Appl Mech Eng. 2020. https://doi.org/10.1016/j.cma.2020.113241.
- 25. Żur KK, Arefi M, Kim J, Reddy JN. Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates basedon nonlocal modified higher-order sinusoidal shear deformation theory. Compos B Eng. 2020. https://doi.org/10.1016/j.compositesb.2019.107601.
- 26. Norouzi H, Alibeigloo A. Three dimensional static analysis of viscoelastic FGM cylindrical panel using state space differentia quadrature method European. J Mech A/Solids. 2017;61:254–66.
- 27. Dastjerdi S, Akgöz B, Civalek Ö. On the effect of viscoelasticity on behavior of gyroscopes. Int J Eng Sci. 2020;149: 103236.
- 28. Jalaei MH, Thai HT, Civalek Ӧ. On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int J Eng Sci. 2022;172: 103629.
- 29. Duc, Nguyen Dinh. Nonlinear static and dynamic stability of functionally graded plates and shells. 2014;724.
- 30. Li M, Cai Y, Bao L, Fan R, Zhang H, Wang H, Borjalilou V. Analytical and parametric analysis of thermoelastic damping in circular cylindrical nanoshells by capturing small-scale effecton both structure and heat conduction. Arch Civil Mech Eng.2022;22:1–6.
- 31. Khorasani VS, Żur KK, Kim J, Reddy JN. On the dynamics and stability of size-dependent symmetric FGM plates with electro-elastic coupling using meshless local Petrov-Galerkin method. Compos Struct. 2022;298: 115993.
- 32. A. Jafari, S. Khalili, and M. Tavakolian (2014). Nonlinear vibration of functionally graded cylindrical shells embedded with apiezoelectric layer .Thin Walled Struct 79 8–15.
- 33. Rouzegar J, Abad F. Free vibration analysis of FG plate with piezoelectric layers using four-variable refined plate theory. Thin Walled Struct. 2015;89:76–83.
- 34. Joseph SV, Mohanty S. Temperature effects on buckling and vibration characteristics of sandwich plate with viscoelastic core and functionally graded material constraining layer. J Sandwich Struct Mater. 2019. https://doi.org/10.1177/1099636217722309.
- 35. M. Javanbakht, M. Shakeri, S. Sadeghi, and A. Daneshmehr (2011). The analysis of functionally graded shallow and non-shallow shell panels with piezoelectric layers under dynamic load and electrostatic excitation based on elasticity .Eur J Mech A Solids 30 983–991.
- 36. Alashti RA, Khorsand M. Three-dimensional dynamo-thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by DQ-FD coupled. Int J Press Vess Piping.2012. https://doi.org/10.1016/j.ijpvp.2012.06.006.
- 37. Zhang SQ, Gao YS, Zhao GZ, Pu HY, Wang M, Ding JH, Sun Y. Numerical modeling for viscoelastic sandwich smart structures bonded with piezoelectric materials. Compos Struct. 2021;278:114703.
- 38. Jadhav PA, Bajoria KM. Free and forced vibration control of piezoelectric FGM plate subjected to electro-mechanical loading. Smart Mater Struct. 2013;22(6):065021.
- 39. Wang H. Thermally induced piezothermoelastic fields of a smart sandwich cylindrical structure with a functionally graded inter-layer. J Therm Stresses. 2014;37:585–603. https:// doi. org/ 10.1080/10510974.2014.884894.
- 40. Monge JC, Mantari JL, Arciniega RA. 3D semi-analytical solution of hygro-thermo-mechanical multilayered doubly-curved shells. Eng Struct. 2022;256: 113916.
- 41. Baptista FG, Budoya DE, De Almeida VA, Ulson JAC. An experimental study on the effect of temperature on piezoelectric sensors for impedance-based structural health monitoring. Sensors. 2014;141:208–1227.
- 42. Heydarpour Y, Malekzadeh P, Dimitri R, Tornabene F. Thermoelastic Analysis of Functionally Graded Cylindrical Panels with Piezoelectric Layers. Appl Sci. 2020;10(4):1397. https://doi.org/10.3390/app10041397.
- 43. Moradi-Dastjerdi R, Behdinan K. Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers. Appl Math Model. 2021;96:66–79. https:// doi. org/ 10.1016/j.apm.2021.03.013.
- 44. Soleimani I, Beni YT. Vibration analysis of nanotubes based on two-node size dependent axisymmetric shell element. Arch Civil Mech Eng. 2018;18(4):1345–58.
- 45. Alibeigloo A. Exact solution of an FGM cylindrical panel integrated with sensor and actuator layers under thermomechanical load. Smart Mater Struct. 2011. https://doi.org/10.1088/0964-1726/20/3/035002.
- 46. Li M, Cai Y, Fan R, Wang H, Borjalilou V. Generalized thermoelasticity model for thermoelastic damping in asymmetric vibrations of nonlocal tubular shells. Thin-Walled Structures.2022;1(174): 109142.
- 47. Permoon M, Haddadpour H, Shakouri M. Nonlinear vibration analysis of fractional viscoelastic cylindrical shells. Acta Mech.2020;231:4683–700.
- 48. Liew KM, Alibeigloo A. Predicting bucking and vibration behaviors of functionally graded carbon nanotube reinforced composite cylindrical panels with three-dimensional flexibilities. Compos Struct. 2021;256: 113039.
- 49. Sofiyev A, Zerin Z, Kuruoglu N. Dynamic behavior of FGM viscoelastic plates resting on elastic foundations. Acta Mech.2020;231:1–17.
- 50. Khayat M, Baghlani A, Najafgholipour MA. The effect of uncertainty sources on the dynamic instability of CNT-reinforced porous cylindrical shells integrated with piezoelectric layers underelectro-mechanical loadings. Comp Struct. 2021. https://doi.org/10.1016/j.compstruct.2021.114336.
- 51. Monge JC, Mantari JL, Arciniega RA. Computational semi-analytical method for the 3D elasticity bending solution of laminated composite and sandwich doubly-curved shells. Engineering Structures. 2020;221: 110938.
- 52. M. Feri, M. Krommer, and A. Alibeigloo (2021). Three-dimensional static analysis of a viscoelastic rectangular functionally graded material plate embedded between piezoelectric sensor and actuator layers. Mech Based Des Struct Mach https://doi.org/10.1080/15397734.2021.1943673.
- 53. Reddy JN, Chin CD. Thermomechanical analysis of functionally graded cylinders and plates. J Therm Stresses.1998;21(6):593–626.
- 54. Chen WQ, Bian ZG, Lv CF, Ding H. 3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid. Int J Solids Struct. 2004;41(3–4):947–64.
- 55. Shu C. Differential quadrature and its application in engineering. Springer Science & Business Media; 2000 Jan 14.
- 56. Durbin F. Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Comput J.1974;17(4):371–6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26b6de40-1f2c-4fad-95d7-6c2dd83a139d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.