PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of shape memory alloy in harvesto-absorber system

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a conception of the harvester-absorber system consisting of two parts. The first is the pendulum attached to the main system (oscillator), which is suspended on the linear damper and the nonlinear spring made of shape memory alloy. The spring is modelled as a polynomial function based on Landau–Ginzburg theory of phase transitions (similar as ferroelectric and ferromagnets). The obtained results show, that SMA element can increase harvesting energy level, while the absorber effect can be impaired (but not loss). Additionally, introducing SMA element causes changes in dynamics, introduces a new unstable solutions and bifurcations. The analysis was done by classical integration and continuation solution methods.
Rocznik
Strony
155--160
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, Department of Applied Mechanics, Lublin University of Technology, 20-618 Lublin, Poland
Bibliografia
  • 1. Cartmell M. P., Lawson J. (1994), Performance enhancement of an autoparametric vibration absorber by means of computer control, Journal of Sound and Vibration, 17(2), 173–195.
  • 2. Doedel E., Oldeman B., Champneys A., Dercole F., Fairgrieve, Kuznetsov Y., Paenroth R., Sandstede B., Wang X., Zhang C. (2011), AUTO-07P: Continuation and bifurcation software for ordinary differential equations, Concordia University (Montreal, Canada, 2011).
  • 3. Falk F. (1980), Model free energy mechanics and thermodynamics of shape memory alloys, Acta Metallurgica, 28, 1773–1780.
  • 4. Gu L., Livermore C. 2010), Pendulum-Driven Passive Self-Tuning Energy Harvester for Rotating Applications, Presented at Power MEMS Workshop, Leuven, Belgium.
  • 5. Janocha H. (Ed.), (2007), Adaptronics and Smart Structures, Springer-Verlag, Berlin Heidelberg New York.
  • 6. Kaynia A. M., Veneziano D., Biggs J. M. (1981), Seismic effectiveness of tuned mass dampers, Journal of Structural Engineering, 107(8), 1465–1484.
  • 7. Kecik K. (2015), Dynamics and control of an autoparametric system, International Journal of Non-linear Mechanics, 70, 63-72.
  • 8. Kecik K., Borowiec M. (2013), An autoparametric energy harvester, Th Europen Physical Journal Special Topics, 222(7), 1597–1605.
  • 9. Kecik K., Mitura A., Sado D., Warminski J. (2014), Magnetorheological damping and semi-active control of an autoparametric vibration absorber, Meccanica, 49(8), 1887-1900.
  • 10. Lacarbonara W. (2012), Nonlinear dynamics enabled systems design and control, Journal of Physics: Conference Series, 382, ID 012001, 1-9.
  • 11. Liao G. J., Gong X. L., Kang C. J., Xuan S. H. (2011), The design of an active–adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance, Smart Material Structure, 20, ID 075015, 1-11.
  • 12. Ma T. W., Zhang H., Xu N. S. 2012), A novel parametrically excited non-linear energy harvester, Mechanical Systems and Signal Processing, 28, 323–332.
  • 13. Oueini S. S., Nayfeh A. H., Golnaraghi M. F. A. (1997), A theoretical and experimental implementation of a control method based on saturation, Nonlinear Dynamics, 13, 189-202.
  • 14. Regis V. (2010), Tuning Methodology of Nonlinear Vibration Absorbers Coupled to Nonlinear Mechanical Systems, PhD Thesis.
  • 15. Sladek J. R., Klingner R. E. (1983), Effect of tuned mass dampers on seismic response, Journal of the Structural Division, 109, 2004–2009.
  • 16. Soto-Brito R., Ruiz S. E. (1999), Influence of ground motion intensity on the effectiveness of tuned mass dampers, Earthquake Engineering and Structural Dynamics, 28, 1255–1271.
  • 17. Vazquez-Gonzalezal B, Silva-Navarro G. (2008), Evaluation of the autoparametric pendulum vibration absorber for a Duffing system, Shock and Vibration, 15, 355–368.
  • 18. Warminski J., Kecik K. (2006), Autoparametric vibrations of a nonlinear system with pendulum. Mathematical Problems in Engineering, 1-19.
  • 19. Warminski J., Kecik K. (2009), Instabilities in the main parametric resonance area of mechanical system with a pendulum,Journal of Sound Vibration, 332, 612-628.
  • 20. Wiercigroch M., Najdecka A., Vaziri V. (2011), Nonlinear Dynamics of Pendulums System for Energy Harvestin, Vibration Problems ICOVP 2011, Book Series: Springer Proceedings in Physics, Edited by: Naprstek J., Horacek J., Okrouhlik M., Marvalova B., Verhulst F., Sawicki J.T., 139, 35-42.
  • 21. Xu X., Pavlovskaia E. E., Wiercigroch M., Romeo F., Lenci S. (2007), Dynamic interactions between parametric pendulum and electro‐dynamical shaker, ZAMM Journal of applied mathematics and mechanics, Zeitschrift für angewandte Mathematik und Mechanik, 87(2), 172–186.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26b43d92-d04c-4518-a67a-dbc5ca72b444
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.