PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the tensile properties of basalt fiber reinforced concrete under impact: experimental and theoretical analysis

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Basalt fiber (BF) can significantly improve the dynamic properties of concrete. However, the underlying mechanism of the effect on the dynamic splitting tensile properties of concrete by comprehensively considering BF content and BF length has not been fully clarified. Under such a background, this study aimed to carry out an orthogonal experiment on the dynamic splitting tensile properties of basalt fiber reinforced concrete (BFRC) by taking into account different fiber contents and lengths using the split Hopkinson pressure bar equipment. The research results indicate that addition of BF improves the dynamic splitting tensile strength and the integrity of concrete after failure. In addition, the sensitivity of the dynamic increase factor of concrete to strain rate shows a continuously increasing trend as BF content increases, but an upward trend first followed by a downward trend with the increase of BF length. Based on the combined results, the optimal fiber content and length were determined to be 0.2% and 6 mm, respectively. Then, combined with high-speed camera and scanning electron microscopy, the failure mechanism of BFRC was deeply revealed. It is found that the reinforcing effect of BF on concrete is mainly reflected as the pull-out failure at low strain rates and the pull-apart failure at high strain rates. Moreover, BF can change the development mode of cracks during the failure process by inhibiting the development of shear failure zone, thereby playing its cracking resistant role. Finally, the K&C model was modified based on the experimental data to make it adapt to BFRC.
Rocznik
Strony
art. no. e99, 2024
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
autor
  • College of Civil Engineering and Hydraulic Engineering, Qinghai University, Xining 810016, China
  • Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, Qinghai University, Xining 810016, Qinghai Province, China
autor
  • College of Civil Engineering and Hydraulic Engineering, Qinghai University, Xining 810016, China
  • Laboratory of Ecological Protection and High Quality Development in the Upper Yellow River, Qinghai University, Xining 810016, Qinghai Province, China
autor
  • Department of Civil Engineering, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
autor
  • Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518000, China
Bibliografia
  • 1. Chen X, Wu S, Zhou J. Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete. Constr Build Mater. 2013;47:419-30.
  • 2. Branston J, Das S, Kenno SY, Taylor C. Mechanical behaviour of basalt fibre reinforced concrete. Constr Build Mater. 2016;124:878-86.
  • 3. Sim J, Park C, Moon DY. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos B Eng. 2005;36(6-7):504-12.
  • 4. Fiore V, Scalici T, Bella GD, Valenza A. A review on basalt fibre and its composites. Compos B Eng. 2015;74:74-94.
  • 5. Sun X, Gao Z, Cao P, Zhou C. Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete. Constr Build Mater. 2019;202:58-72.
  • 6. Dias D, Thaumaturgo C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cement Concr Compos. 2005;27(1):49-54.
  • 7. Taha A, Alnahhal W, Alnuaimi N. Bond durability of basalt FRP bars to fiber reinforced concrete in a saline environment. Compos Struct. 2020;243: 112277.
  • 8. Branston J, Das S, Kenno SY, Taylor C. Influence of basalt fibres on free and restrained plastic shrinkage. Cement Concr Compos. 2016;74:182-90.
  • 9. Wu Z, Shi C, He W, Wang D. Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements. Cement Concr Compos. 2017;79:148-57.
  • 10. Lai J, Sun W. Dynamic behaviour and visco-elastic damage model of ultra-high performance cementitious composite. Cem Concr Res. 2009;39(11):1044-51.
  • 11. Mastali M, Dalvand A, Sattarifard AR. The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fibre reinforced polymers. J Clean Prod. 2016;124:312-24.
  • 12. Zhang C, Wang Y, Zhang X, Ding Y, Xu P. Mechanical properties and microstructure of basalt fiber-reinforced recycled concrete. J Clean Prod. 2021;278: 123252.
  • 13. Shafiq N, Ayub T, Khan S. Investigating the performance of PVA and basalt fibre reinforced beams subjected to flexural action. Compos Struct. 2016;153:30-41.
  • 14. Algin Z, Ozen M. The properties of chopped basalt fibre reinforced self-compacting concrete. Constr Build Mater. 2018;186:678-85.
  • 15. Jiang C, Fan K, Wu F, Chen D. Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete. Mater Des. 2014;58:187-93.
  • 16. Yu W, Jin L, Du X. Experimental study on compression failure characteristics of basalt fiber-reinforced lightweight aggregate concrete: Influences of strain rate and structural size. Cement Concr Compos. 2023;138: 104985.
  • 17. Yang L, Xie H, Fang S, Huang C, Yang A, Chao YJ. Experimental study on mechanical properties and damage mechanism of basalt fiber reinforced concrete under uniaxial compression. Structures. 2021;31:330-40.
  • 18. Sun X, Gao Z, Cao P, Zhou C, Ling Y, Wang X, Zhao Y, Diao M. Fracture performance and numerical simulation of basalt fiber concrete using three-point bending test on notched beam. Constr Build Mater. 2019;225:788-800.
  • 19. Zhang H, Wang B, Xie A, Qi Y. Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete. Constr Build Mater. 2017;152:154-67.
  • 20. Xie L, Sun X, Yu Z, Guan Z, Long A, Lian H, Lian Y. Experimental study and theoretical analysis on dynamic mechanical properties of basalt fiber reinforced concrete. J Build Eng. 2022;62: 105334.
  • 21. Zhou Y, Zou S, Wen J, Zhang Y. Study on the damage behavior and energy dissipation characteristics of basalt fiber concrete using SHPB device. Constr Build Mater. 2023;368(3): 130413.
  • 22. Fu Q, Xu W, Li D, Li N, Niu D, Zhang L, Guo B, Zhang Y. Dynamic compressive behaviour of hybrid basalt-polypropylene fibre-reinforced concrete under confining pressure: Experimental characterisation and strength criterion. Cement Concr Compos. 2021;118: 103954.
  • 23. Xie H, Yang L, Zhang Q, Huang C, Chen M, Zhao K. Research on energy dissipation and damage evolution of dynamic splitting failure of basalt fiber reinforced concrete. Constr Build Mater. 2022;330: 127292.
  • 24. Zhang H, Jin C, Wang L, Pan L, Liu X, Ji S. Research on dynamic splitting damage characteristics and constitutive model of basalt fiber reinforced concrete based on acoustic emission. Constr Build Mater. 2022;319: 126018.
  • 25. Malvar L, Crawford J, Wesevich J, Simons D. A plasticity concrete material model for DYNA3D. Int J Impact Eng. 1997;19(9-10):847-73.
  • 26. CNS (China National Standards). Specification for mix proportion design of ordinary concrete. JGJ 55-2011. Beijing: China Architecture and Building Press; 2011.
  • 27. Zhang X, Abd EA, Ruiz G, Yu R. Fracture behaviour of steel fibre-reinforced concrete at a wide range of loading rates. Int J Impact Eng. 2014;71:89-96.
  • 28. The Ministry of Water Resources of the People’s Republic of China. SL352-2006, Test code for hydraulic concrete[S].
  • 29. CECS13:2009. Standard for test methods of fibrous concrete. China Planning Press, Beijing, 2010.
  • 30. Wang J, Qian J, Li R, Chen T. Improvement and application of fuzzy probabilistic method. Syst Eng Theory Pract. 2007;27(5):173-6.
  • 31. Wang Y, Wang Z, Liang X, An M. Experimental and numerical studies on dynamic compressive behavior of reactive powder concretes. Acta Mech Solida Sin. 2008;21(5):420-30.
  • 32. Lee S, Kim KM, Cho JY. Investigation into pure rate effect on dynamic increase factor for concrete compressive strength. Procedia Eng. 2017;210:11-7.
  • 33. Chen X, Ge L, Zhou J, Wu S. Experimental study on split hopkinson pressure bar pulse-shaping techniques for concrete. J Mater Civ Eng. 2016;28(5):04015196.
  • 34. Yang Y, Wu C, Liu Z. Rate dependent behaviour of 3D printed ultra-high performance fibre-reinforced concrete under dynamic splitting tensile. Compos Struct. 2023;309: 116727.
  • 35. Chen M, Chen W, Zhong H, Chi D, Wang Y, Zhang M. Experimental study on dynamic compressive behaviour of recycled tyre polymer fibre reinforced concrete. Cement Concr Compos. 2019;98:95-112.
  • 36. Chen M, Si H, Fan X, Xuan Y, Zhang M. Dynamic compressive behaviour of recycled tyre steel fibre reinforced concrete. Constr Build Mater. 2022;316: 125896.
  • 37. Wei C, Sun X, Yu Z, Zhang P. Experimental study and mechanism analysis on basic mechanical properties of basalt fiber reinforced concrete. Struct Concr. 2022;24(3):4199-226.
  • 38. Long A, Sun X, Yu Z, Zhang B, Zhang G, Huang P, Wang J. Experimental study and mechanism analysis on the basic mechanical properties of hydraulic basalt fiber asphalt concrete. Mater Struct. 2022;55:161.
  • 39. Xie L, Sun X, Yu Z. Experimental study and mechanism analysis on the shear dynamic performance of basalt fiber reinforced concrete. J Mater Civ Eng. 2023;35(1):04022374.
  • 40. Khan M, Hao Y, Hao H, Shaikh FA. Mechanical properties and behaviour of high-strength plain and hybrid-fiber reinforced geopolymer composites under dynamic splitting tension. Cement Concr Compos. 2019;104: 103343.
  • 41. Ranjbar N, Zhang M. Fiber-reinforced geopolymer composites: A review. Cement Concr Compos. 2020;107: 103498.
  • 42. Pirmohammad S, Amani B, Shokorlou YM. The effect of basalt fibres on fracture toughness of asphalt mixture. Fatigue Fract Eng Mater Struct. 2020;43(7):1446-60.
  • 43. Lai D, Demartino C, Xiao Y. High-strain rate tension behavior of fiber-reinforced rubberized concrete. Cement Concr Compos. 2022;131: 104554.
  • 44. Zhang Y, Wang Q, Han D, Xue Y, Lu S, Wang P. Dynamic splitting tensile behaviours of distilled-water and river-water ice using a modified SHPB setup. Int J Impact Eng. 2020;145: 103686.
  • 45. Hassan M, Wille K. Experimental impact analysis on ultra-high performance concrete (UHPC) for achieving stress equilibrium (SE) and constant strain rate (CSR) in Split Hopkinson pressure bar (SHPB) using pulse shaping technique. Constr Build Mater. 2017;144:747-57.
  • 46. Li X, Zhang Y, Shi C, Chen X. Experimental and numerical study on tensile strength and failure pattern of high performance steel fiber reinforced concrete under dynamic splitting tension. Constr Build Mater. 2020;259: 119796.
  • 47. Chen M, Zhong H, Wang H, Zhang M. Behaviour of recycled tyre polymer fibre reinforced concrete under dynamic splitting tension. Cement Concr Compos. 2020;114: 103764.
  • 48. Ravichandran G, Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split hopkinson pressure bar. J Am Ceram Soc. 1994;77(1):263-7.
  • 49. Tang L, Zhou W, Liu X, Ma G, Chen M. Three-dimensional mesoscopic simulation of the dynamic tensile fracture of concrete. Eng Fract Mech. 2019;211:269-81.
  • 50. Shemirani AB, Naghdabadi R, Ashrafi MJ. Experimental and numerical study on choosing proper pulse shapers for testing concrete specimens by split Hopkinson pressure bar apparatus. Constr Build Mater. 2016;125:326-36.
  • 51. Chen X, Ge L, Zhou J, Wu S. Dynamic Brazilian test of concrete using split Hopkinson pressure bar. Mater Struct. 2017;50:1-15.
  • 52. Zhao X, Li Q, Xu S. Contribution of steel fiber on the dynamic tensile properties of hybrid fiber ultra high toughness cementitious composites using Brazilian test. Constr Build Mater. 2020;246: 118416.
  • 53. Wang N, Mindess S, Ko K. Fibre reinforced concrete beams under impact loading. Cem Concr Res. 1996;26(3):363-76.
  • 54. Kong X, Fang Q, Li QM, Wu H, Crawford JE. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact. Int J Impact Eng. 2017;108:217-28.
  • 55. Mardalizad A, Manes A, Giglio M. An investigation in constitutive models for damage simulation of rock material. AIAS, Associazione Italiana Per L’analisi Delle Sollecitazioni, Universita Degli Studi Di Trieste, Italy, 2016.
  • 56. Attard M, Setunge S. Stress-strain relationship of confined and unconfined concrete. ACI-Mater J. 1996;93(5):432-42.
  • 57. Samani A, Attard MM. A stress-strain model for uniaxial and confined concrete under compression. Eng Struct. 2012;41:335-49.
  • 58. Markovich N, Kochavi E, Ben-Dor G. An improved calibration of the concrete damage model. Finite Elem Anal Des. 2011;47(11):1280-90.
  • 59. Zhang F, Shedbale AS, Zhong R, Poh LH, Zhang MH. Ultra-high performance concrete subjected to high-velocity projectile impact: implementation of K&C model with consideration of failure surfaces and dynamic increase factors. Int J Impact Eng. 2021;155: 103907.
  • 60. Xu J, Lu Y. Numerical modelling for reinforced concrete response to blast load: understanding the demands on material models, vol. 306. Farmington Hills: ACI-Special Publication; 2016. p. 31-322.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-26a6e5cf-e6a5-4ce2-90f1-ea98cd13c232
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.